18 March 2007 Hideyuki Tatsuno

Compton tail fitting

I. Simulation

II. Fitting

I. Simulation

Geant 4 tool-kit with the LECS package

I got a response from the EGS4 developers (Prof. Hirayama and Prof. Namito) . They said the simulation error of the cross section of bound-Compton scattering and Rayleigh scattering in He4 is only several %. We don't have to worry about them.

- 1. Geometry
- 2. Stopped Kaon distribution

1. Geometry (simulation)

2. Stopped Kaon distribution (2nd cycle)

VDC + PDC tracking

"Kstop" definition is same as the okada-san's report on 6 Oct, 2006

x,y and z distributions were fitted by Gaussians respectively

NO. 1 2 3	Constant Mean Sigma	VALUE 9.71193e+02 -5.30472e-02 5.44995e+01	ERROR 3.64484e+00 1.84166e-01 1.88526e-01
Y NO. 1 2 3	Constant Mean Sigma	VALUE 1.07039e+03 -1.02382e-01 4.79061e+01	ERROR 3.91987e+00 1.52559e-01 1.37566e-01
Z-NO. 1 2 3	Constant Mean Sigma	VALUE 6.13680e+04 9.72280e+00 1.47217e+02	ERROR 3.15142e+01 1.96770e-01 7.68956e-01

II. Fitting

Compton tail fit

1. Fit function

The tail distribution is the convolution of an exponential function with a Gaussian and given by

$$T(i, E_{jk}) = \frac{Gain}{2\beta\sigma_{jk}} e^{\frac{E_i - E_{jk}}{\beta\sigma_{jk}} + \frac{1}{2\beta^2}} \operatorname{erfc}\left(\frac{E_i - E_{jk}}{\sqrt{2}\sigma_{jk}} + \frac{1}{\sqrt{2}\beta}\right)$$
(7)

X-Ray Spectrom. 2003; 32: 434 – 441

2. Parameters

144 CALLS FCN=72.3163 FROM MINOS STATUS=SUCCESSFUL 231 TOTAL EDM=8.5463e-16 STRATEGY = 1ERROR MATRIX ACCURATE FXT PARAMETER PARABOLIC MINOS ERRORS NO. NAMF VALUE ERROR NEGATIVE POSITIVE 6.41354e+03 1.93418e+00 -1.95222e+00 1.91645e+00 G mean [eV] 1 2 1.14824e+00 -1.14720e+00 G sigma [eV] 8.79822e+01 1.14867e+00 3 1.32900e+05 ↓ 1.15322e+03 −1.15322e+03 1.15322e+03 Area 8.75844e-01 S.11523e-02 -3.11170e-02 3.11887e-02 4 Slope

Area should be divided by bin-width

KHeX L alpha (6464.0 eV) fit

lst cycle

1st cycle KHeX La (6464 eV)

only Compton tail

Bin-width : 10 eV Fit region : 5600-6800 eV

Chisqr/NDF = 72.3/92

Good fit !

1st cycle KHeX La (6464 eV)

Total fit

1st cycle KHeX La (6464 eV)

Γ=0 eV : pure Gaussian

Total fit with free Compton tail

simulated Compton

fitted Main Gaussian

fitted Compton : smaller than the simulated histogram

Bin-width : 10 eV Fit region : 5600-6800 eV

Chisqr/NDF = 84.3/108

main Gauss mean = 6462.1±0.7

~2eV lower than the generated energy

Simulation

[KHeX L-alpha (6464eV) Ist cycle] Number of Events Total = 110346 +- 332.184 Normal = 86553 Compton = 13385 +- 115.694 Rayleigh = 10155 Compton other + escaped Rayleigh = 253

Ratios Compton/Total = 0.1213 + 0.00111023Compton/(Normal+Rayleigh) = 0.138406 + 0.00127643

1st cycle KHeX La (6464 eV)

Γ=0 eV : pure Gaussian

Total fit with free Compton tail

Compton area = 8595.6 (Normal+Ray) area = 100822

Ratio

Compton/(Normal+Ray) = 0.0852556

too small !

FCN=8	34.2	2913	FROM	MINOS	STATI	JS=SL	JCCESSFUL	152	4 CAL	LS	16	56 TOTAL
				EDM=	1.1759e	-08	STRATE	GY= 1		ERROR	R MATRIX	ACCURATE
EXT	PAF	RAMET	ER			PARA	ABOLIC		MINOS	ERRC)RS	
NO.	Ν	NAME		VALUE		EF	ROR	NEGAT	IVE	P	POSITIVE	
1	g n	nean	[eV]	6.364	54e+03	1.2	24264e+01	-1.0	8203e	+01	1.5328	7e+01
2	g s	sigma	[eV]	6.42	641e+01	6.	70386e+0	0 -6.	18081	e+00	7.562	67e+00
3	t d	area		8.5956	0e+04	9.96	500e+03	-8.29	126e+	03	1.31479	e+04
4	t s	slope		1.2822	2e+00	1.57	′929e-01	-1.56	791e-	01	1.62519	e-01
5	Go	area		1.0082	2e+06	1.04	184e+04	-1.34	-068e+	04	8.91719	e+03
6	Gn	nean	[eV]	6.462	10e+03	7.2	29986e-01	-6.6	9873e	-01	8.3203	8e-01
7	Gs	sigma	[eV]	8.19	596e+01		fixed					

Total fit

1st cycle KHeX La (6464 eV)

Γ=0 eV : pure Gaussian

Total fit with fixed Compton tail

Tail parameters were fixed

Bin-width : 10 eV Fit region : 5600-6800 eV

Chisqr/NDF = 92.0/112

main Gauss mean = 6463.7±0.3

Simulation

[KHeX L-alpha (6464eV) 1st cycle] Number of Events Total = 110346 +- 332.184 Normal = 86553 Compton = 13385 +- 115.694 Rayleigh = 10155 Compton other + escaped Rayleigh = 253

Ratios Compton/Total = 0.1213 + 0.00111023Compton/(Normal+Rayleigh) = 0.138406 + 0.00127643

1st cycle KHeX La (6464 eV)

Γ=0 eV : pure Gaussian

Total fit with fixed Compton tail

Compton area = 13290 (Normal+Ray) area = 96040.6

Ratio

Compton/(Normal+ray) = 0.138379

FCN=9	91.9866 FROM	MINOS STAT	US=SUCCESSFUL	24 CALL	S 63 ⁻	TOTAL
		EDM=3.52502	e-08 STRAT	EGY= 1	ERROR MATRIX	
ACCURA	ATE					
EXT	PARAMETER		PARABOLIC	MINOS	ERRORS	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	
1	g mean [eV]	6.41354e+03	fixed			
2	g sigma [eV] 8.79800e+01	fixed			
3	t area	1.32900e+05	fixed			
4	t slope	8.75800e-01	fixed			
5	G area	9.60406e+05	3.26179e+03	-3.26212e+0	3 3.26144e+0	3
6	G mean [eV]	6.46368e+03	2.91185e-01	-2.91213e-	01 2.91158e-0	01
7	G siama FeV	7 8.19596e+01	fixed			

The generated X-ray energy was reproduced by the fitting with fixed Compon tail (Γ =0).

How about Voigt smearing ?

For example Γ=20 eV

Total fit (Voigt)

1st cycle KHeX La (6464 eV)

Γ=20 eV : Voigt profile

Total fit with fixed Compton tail

Tail parameters were fixed from the Gauss*Exp convolution (Not Voigt)

Bin-width : 10 eV Fit region : 5500-7500 eV

mean = 6464.9±0.4 gamma = 21.1±0.3

systematics error $\sim 1 \text{ eV}$

Simulation

Ratios

[KHeX L-alpha (6464eV) st cycle]
Number of Events
Total = $ 10346 + 332.184$
Normal = 86553
Compton = 13385 +- 115.694
Rayleigh = 10155
Compton other + escaped Rayleigh = 253

Compton/Total = 0.1213 + 0.00111023Compton/(Normal+Rayleigh) = 0.138406 + 0.00127643

1st cycle KHeX La (6464 eV)

Γ=20 eV : Voigt profile

Total fit with fixed Compton tail

Compton area = 13290 (Normal+Ray) area = 95892.5

Ratio

Compton/(Normal+Ray) = 0.138593

FCN=190.247 FROM MINOS STATUS=SUCCESSFUL 60 CALLS 118 TOTAL EDM=1.09751e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER PARABOLIC MINOS ERRORS ERROR NO. NAME VALUE NEGATIVE POSITIVE g mean [eV] 6.41354e+03 fixed 1 2 g sigma [eV] 8.79800e+01 fixed 1.32900e+05 fixed 3 t area 4 t slope 8.75800e-01 fixed 5 V mean [eV] 6.46487e+03 3.30832e-01 -3.30906e-01 3.30933e-01 V sigma [eV] 8.19596e+01 fixed 6 7 V gamma [eV] 2.11093e+01 4.26216e-01 -4.26072e-01 4.26368e-01 4.00000e+00 fixed Vr 8 9 V area 9.58925e+05 3.30784e+03 -3.30803e+03 3.30767e+03

Γ dependence

Energy [eV]

1st cycle KHeX La (6464 eV) Γ=10 eV : Voigt profile

mean = 6464.3±0.3 gamma = 10.2±0.3

1st cycle KHeX La (6464 eV) Γ=30 eV : Voigt profile mean = 6464.6±0.3

 $gamma = 32.4 \pm 0.5$

1st cycle KHeX La (6464 eV) Γ=40 eV : Voigt profile

mean = 6465.8±0.4 gamma = 42.4±0.6

1st cycle KHeX La (6464 eV) Γ=50 eV : Voigt profile

mean = 6466.1±0.4 gamma = 53.6±0.6

The shift has a systematic error (~2 eV) in large Γ.

Summary

Compton tail can be fitted well by a Exp*Gauss convolution function.

Fixed-Compton-tail fit is reasonable to reproduce the generated photon energy.

Voigt smearing with fixed-Compton has $\sim \pm 1 \text{ eV}$ and $\sim \pm 1 \text{ eV}$ systematics error for the shift and width, respectively (at $\Gamma=20 \text{ eV}$, depend on the Γ).

 \rightarrow Since Γ should be determined experimentally, we have to consider the conservative systematics for the final results.

Compton tail correction will be done soon!