

Institute Laboratory Assessment Interim Review

Date: 26/2/2010

Masahiko Iwasaki

Advanced Meson Science Laboratory

The Chief Scientist

Background - Present

RIKEN Nishina Center for Accelerator-Based Science

(RNC)

1. Inaugurated in April 2007

(with 80 years of history)

2. Mission

1) Promotion of Accelrator-related Science

Nuclear Physics, Particle Physics, Applications Kaonic Atoms/Nuclei @ J-PARC / DAΦNE Muon Science @ RIKEN-RAL / J-PARC ?

2) Operation of RI Beam Factory (RIBF)

- Most powerful low-energy HI accelerator
- Operation started two years ago
- Open to the users world-wide

Pionic Atoms @ RIBF In beam Mössbauer @ RIBF

- 3) International Collaboration
 - RIKEN-BNL Research Center
 Spin physics @ RHIC polarized proton collider
 - RIKEN RAL Branch
 Promotion of muon science

<image>

Cold Muon Generation RIKEN / UT / TITech / KEK / TRIUMF / Tohoku U. / TMU / JAXA Pulse-Laser driven µSR Yamanashi U. / KEK / UCR / RAL / RIKEN

Advanced Meson Science Laboratory

nuclear physics

mesonic atoms (atomic physics / nuclear physics)

mesons in nuclei (nuclear physics)

A in nuclei (nuclear physics)

muon science

µCF : muon catalyzed fusion (chemistry / atomic physics / nuclear physics)

µSR : muon spin rotation / resonance ...

(condensed matter physics)

µA* : muonic atoms (nuclear physics)

cold-µ : muon magnetic microscope / muon g-2

(particle physics / atomic physics / condensed matter physics)

Mössbauer

in-beam M: RI-beam Mössbauer spectroscopy

(condensed matter physics)

Advanced Meson Science Laboratory

nuclear physics

Background - Present

enthusiastic promoter K. Nakai

funded 2M\$ at age 33!

KEK KpX E228 kaonic hydrogen atom

K. Yazaki's question:

"Why you cannot resolve kaonic hydrogen puzzle?"

.

kaonic hydrogen puzzle

PHYSICAL REVIEW D

VOLUME 50 1 AUGUST 1994

THE *A*(1405) by R.H. Dalitz, Oxford University

The present status of the $\Lambda(1405)$ thus depends heavily on theoretical arguments, a somewhat unsatisfactory basis for a four-star rating. Nevertheless, there is no known reason to doubt its existence or quantum numbers. A measurement of the energy-level shifts and widths for the atomic levels of kaonic hydrogen (and deuterium) would give a valuable check on analysis of the $(\Sigma \pi, N\overline{K})$ amplitudes, since the energy of the K⁻p atom lies roughly midway between those for the two sets of data. The three measurement of $(\Delta E - i\Gamma/2)$ for kaonic hydrogen are inconsistent with one another and require that the sign of $\operatorname{Re}(A_{I=0} + A_{I=1})$ be opposite that deduced from $N\overline{K}$ reaction data (see BATTY 89). Accurate measurements of $(\Delta E - i\Gamma/2)$ values for kaonic hydrogen are badly needed, but may not be possible until the KAON factory becomes operational.

Kaonic Hydrogen Puzzle!

1000 Constant Scattering Length K-Matrix Potential Model Cloudy Bag Model Constituent Quark Model Veit et al. 85 He & Landau 93 800 Tanaka & Suzuki 92 Siegel & Saghai 95 Conboy 85 600 Vidth (eV) Kim 65 Martin & Ross 70 Dalitz et al. 82 Martin & Sakitt 69 400 \bigcirc Von Hippel & Kim 68 Sakitt et al. 65 Kumar & Nogami 80 Δ Hamaie et al. 95 200 -500 0 500 Shift (eV)

nuclear physics (pre-history)

How to approach kaonic hydrogen puzzle?

- Background Free final state tagging
- Gas Target

Stark Free

• Si(Li) in Hydrogen Gas

Reaction	Produced	Branching	$\pi/\mu/e$ Multiplicity	γ Multiplicity
	Particles	Ratio	(> 150 MeV/c)	
		Free De	cay of K ⁻	
$\mu^-\nu$	$\mu^{-}\nu$	63.5 %	1	0
$\pi^-\pi^{o}$	$\pi^- 2\gamma$	21.2 %	1	2
$\pi^-\pi^-\pi^+$	$\pi^-\pi^-\pi^+$	5.59 %	0	0
$e^{-}\pi^{\circ}\nu$	$e^-2\gamma$	4.82 %	1	2
$\mu^-\pi^o\nu$	$\mu^- 2\gamma$	3.18 %	1	2
$\pi^-\pi^o\pi^o$	$\pi^- 4\gamma$	1.73 %	0	4
		K ⁻ p I	Reaction	
$\Sigma^+\pi^-$	$\pi^- 2 \gamma \mathrm{p}$	10 %	1	2
$\Sigma^+\pi^-$	$\pi^{-}\pi^{+}n$	10 %	2	0
$\Sigma^{-}\pi^{+}$	$\pi^+\pi^-n$	46 %	2	0
$\Sigma^{\mathrm{o}}\pi^{\mathrm{o}}$	$\pi^- 3 \gamma \mathrm{p}$	18 %	0	3
$\Sigma^{\mathrm{o}}\pi^{\mathrm{o}}$	$5\gamma n$	10 %	0	5
$\Lambda\pi^{\mathrm{o}}$	$\pi^- 2 \gamma \mathrm{p}$	4 %	0	2
$\Lambda\pi^{\mathrm{o}}$	$4\gamma n$	2 %	0	4

nuclear physics (pre-history)

The European Physical Journal C

Volume 15 · Number 1-4 · 2000

THE A(1405)

Revised March 1998 by R.H. Dalitz, Oxford University

From the measurement of 2p - 1s x rays from kaonichydrogen, the energy-level shift ΔE and width Γ of its 1s state can give us two further constraints on the $(\overline{\Sigma}\pi, NK)$ system, at an energy roughly midway between those from the low-energy hydrogen bubble chamber studies and those from qR($\Sigma\pi$) observations below pK⁻ threshold. IWASAKI 97 have reported the first convincing observation of this x ray, with a good initial estimate:

 $\Delta E - i\Gamma/2 = (-323 \pm 63 \pm 11) - i(204 \pm 104 \pm 50) \text{ eV}. (2)$

the errors here encompass about half of the predictions made following various analyses and/or models for the in-flight K^-p and sub-threshold $qR(\Sigma\pi)$ data. Better measurements will be needed to discriminate between the analyses and predictions. ..., perhaps from the DA Φ NE storage ring at Frascati, information vital for our quantitative understanding of the $(\Sigma\pi, NK)$ system in this region.

Dose \overline{KN} interaction repulsive?

R. Seki, Phys. Rev. C<u>5</u> (1972) 1196 S. Baird et al., Nucl. Phys. A<u>392</u> (1983) 297

C.J. Batty, Nucl. Phys. A<u>508</u> (1990) 89c

Kaonic helium puzzle

S.Hirenzaki, Y.Okumura, H.Toki, E.Oset, and A.Ramos Phys. Rev. C 61 055205

S. Hirenzaki, Y. Okumura, H. Toki, E. Oset and A. Ramos Phys. Rev. C 61 (2000)

02/14

Kaonic helium puzzle was resolved

The SIDDHARTA experiment

why proton is heavy?

higgs mechanism give less than 2% of the proton mass quark anti-quark pair condensation exist? = what is vacuum?

Because KN s-wave interaction is strongly attractive, something drastic may happen!

Y. Akaishi & T. Yamazaki : PRC 65 (2002) 044005

⁴He(K⁻, nX[±]) missing mass spectrum E471/E549/E570

9

Search for multi-kaonic nucleus (J-PARC Lol)

- The double-kaonic clusters : expected much stronger binding energy and higher density.
- Double-Strangeness production is forbidden for stopped antiproton

Width B.E. **Central**-[MeV] [MeV] Density -117 35 K-K-pp 37 -221 K-K-ppn $17\rho_0$ -103 К-К-ррр -K-K-pppn -230 61 Ι4ρ₀ -109 К-К-рррр

PL,B587,167 (2004). & NP, A754, 391c (2005).

$$\overline{p} + p \rightarrow K^+ + K^+ + K^- + K^- - 98 \text{ MeV}$$

if deep multi-kaonic nucleus exists, following channel **will open**! ... P. Kienle

$$\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}pp + B_{KK}^{pp} - 109 \text{MeV} \implies \overset{B.E.=117 \text{MeV}}{\Gamma=35 \text{MeV}}$$

Anti-proton induced in the ³He and detect $K^+K^0 \wedge \Lambda$ as final state

d

Advanced Meson Science Laboratory

RIKEN-RAL Muon Facility (RRMF)

2010年2月27日土曜日

High intensity proton accelerator facility of Rutherford Appleton Laboratory in UK

Specification: Energy 800 MeV, Current 300 µA, Repetition 50 Hz, double pulses

RIKEN-RAL Muon Facility (RRMF) @ 2008 Production Target 800MeV Proton Beam Port 3 (Low Energy Muon) Pion Laser Room Injector Superconducting Solenoid DC Separator Kicker Magnet Cold Box DC Separator DAC Room Port 4 (µA*) 0 2m Laser Room Laser to Port 2 Port 2 Port 1 (µSR) (µCF)

introduction to Muon Spin Rotation (µSR)

- a unique and sensitive probe for the magnetic property

RIKEN-RAL Toward 3rd Term 3rd term = 2010/10 ~ 2017/3

name	iinstitute	job title
Andrew Taylor	RAL / United Kingdom	ISIS Director
Stephen J. Blundell	University of Oxford / United Kingdom	Professor
Kurt N. Clausen	PSI / Switzerland	Department Head of Neutrons and Muons
Jun Imazato	KEK / Japan	Professor
Jean-Michel Poutissou	TRIUMF / Canada	Associate Director
Eiko Torikai	University of Yamanashi / Japan	Professor

Nov. 26-27, 2007 / Nov. 4-5, 2008

A. Taylor, the Chair, visiting President R.Noyori

RRMF-AC: RIKEN-RAL Muon Facility Advisory Committee

TWO ITEMS CONCERN WITH MuSAC

- NCAC endorses the recommendation of the RIKEN-RAL IAC that *Condensed Matter and Molecular Science* and *Ultra-Slow Muon Source Development* be prioritized as the first of two central pillars of the future RIKEN-RAL facility programme, and given sufficient resources to enable its continued development. The NCAC further supports the IAC recommendation for an extension of the RIKEN-RAL agreement beyond 2010 by at least another 7½ years to 2018.
- NCAC sees future opportunities at J-PARC and suggests that the interested parties explore the establishment of a RIKEN J-PARC Center.
- starting from hadron physics -

S.Gales

Chair of NCA

RIKEN-RAL Beyond 2nd Term

2nd term = 1999/10 ~ 2009/9

Recent focus toward 3rd term

(1) High intensity laser system for slow μ^+ beam production (Port-3)

New muon g-2 measurement / surface µSR = 2~4 kHz slow muon @ RIKEN-RAL

100 times higher intensity (50~100 $\mu J)$ of VUV (122 nm) light

Search for efficient muonium-producing target materials

(2) Laser µSR experiments (Port-2)

The laser system under collaboration of Yamanashi U., KEK, UCR, RIKEN-RAL.

"Spinstronics": R-331,R-361 (K.Nagamine), R-327(E. Torikai), "Muonium chemical reaction": R-317(D. Fleming) "Molecular state": RB-810980(F.L.Pratt), "Muonium state": RB-810217(S.Giblin)

(3) New µSR spectrometer (Port-4)

New multi-segmented (600 ch.) µ-e counters

(4) High pressure cell for µSR (Port-2)

Uniqueness of RIKEN-RAL (vs. J-PARC)

due to required high-momentum muon beam (thanks to ISIS shorter double pulse time separation)

(5) Remote µSR experiment on demand concept

(2) Muons for Spintronics:

New Muonium Method Detecting Conduction Electron Spin Polarization (CESP) in n-type GaAs

µSR experiment

Celebrating first successful laser-

10

Prof. Nagamine, Prof. Tom, Prof. Kawakami, Mr. Yokoyama (UC Riverside), Dr. Shimomura (KEK), Dr. Pratt (ISIS), Dr. Matsuda and Dr. Bakule (RIKEN-RAL) showing their first result of the laser irradiation uSR.

(16 February 2008)

Asymmetry [%] 14 13 12 Laser OFF Spin configuration 11 Parallel Antiparallel 10 1 2 3 4 5 6 7 8 9 0 2010年2月27日土曜日

(3) expanding µSR capability @ RRMF

New µSR spectrometer at Port-4

key issues:

- highly segmented direction sensitive detector array
- enhance S/N with Fly-Path operation
- new DAQ and temperature/field control system

supported by "Molecular an ensemble" program

headed by R. Kato

2010年2月27日土曜日

half-unit of the µe decay counters

spectrometer magnet

readout fiber connectors and MA-PMT attachment

(3) Spectrometer installation

--- try and error for HP-µSR

key issues:

- intensive work and collaboration RRMF-ISIS
- keep try and error

to expand capability of available HP region

(I) ultra-slow µ generation (Port-3)

New laser scheme for g-2 muon source

spot size : 30 x 30 μ m² x 10 nm target size : few g \rightarrow few 10th ng! 2~3 kHz slow- μ realization at RRMF

key issues:

 realization of first practical (~100µJ) VUV pulse laser muonium laser ionization

- realization of low temperature muonium generator lower momentum dispersion: realization of zero emittance beam (g-2) better energy matching by avoiding Doppler effect localized, higher density muonium in vacuum better special overlapping with laser

- interdisciplinary contribution surface (material interface) physics by slow muon, laser chemistry, etc.

(I) VUV Laser & Muonium Target development

New Laser with Wada solid state laser Lab.

- Difficulty
 - optical damage:

phase matching loss in non-linear optics: shallow focus, gas jet Kr cell (avoid window), pressure control, impurity insertion

⇒ challenge: muonium polarization recovery

Nakajima (Kyoto U.) : laser pumping

Muonium generator development

Let's listen to the whispering of muon / nature

Why muon g-2?

magnetic moment

- $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s}$ $\vec{\mu}$: magnetic moment \vec{s} : spin g: gyromagnetic ratio

DIRAC Equation : g = 2

$$\mu = (1+\alpha) \left(\frac{e\hbar}{2m}\right)$$
$$a = \frac{g-2}{2} = \frac{1}{2} \left(\frac{\alpha}{\pi}\right) - 0.3248 \left(\frac{\alpha}{\pi}\right)^2 + \dots$$
QED WITE

inconsistent with SM! $\Delta a_u^{(\text{today})} = \Delta a_u^{(\text{Exp})} - \Delta a_u^{(\text{SM})} = (295 \pm 88) \times 10^{-11}$

beyond standard model?

Muon g-2 measurement at BNL E821

storage muon at magic momentum, and observe forward decay positron by calorimeter

2010年2月27日土曜日

A) Muon Source at Room Temp.

Question: How to minimize emittance $\Delta x \cdot \Delta \theta_x$? Ans.: Reduce temperature!

Test experiment will be submitted to TRIUMF with A. Olin etc.

2010年2月27日土曜日

Advanced Meson Science Laboratory

Mössbauer spectroscopy

Mössbauer spectroscopy at RIKEN-RIBF

(1) ⁵⁷Mn implantation Mössbauer spectroscopy (a) **metastable states** induced by nuclear decays (b) atomic jump process of localized atoms in Si (2) ⁹⁹Ru, ⁶¹Ni, and ⁸³Kr Mössbauer studies (a) ⁹⁹Ru Mössbauer and mSR studies of CaRuO₃ (b) magnetic studies of Skutterudites RRu_4P_{12} (c) catalytic property of NiO (3) On-line Mössbauer studies using nuclear reactions (a) neutron capture reaction (b) negative muon capture process (4) Conventional ⁵⁷Fe Mössbauer spectroscopy (a) proton-coupled intramolecular electron transfer (b) oxidizing intermediates in nonheme Fe enzymes (c) mixed-valence states and spin crossover phenomena (5) Applications of B-NMR to materials science

The dreams/objectives are: Origin of Matter Mass Beyond Standard Model also contribute to other field

by µ-science and Mössbauer

Thank you for your attention!

Institute Laboratory Assessment Interim Review

Laboratory Management

RIKEN Nishina Center

Advanced Meson Science Laboratory

M. Iwasaki

MuSAC

Organization of RIKEN Nishina Center (established on April 1 2006)

ML: Material and Life Science

Transparency to answer my "research philosophy"

I've never ever tried to compile / summarize my "research philosophy". Research after research, just do it, because its fun!

If I shall make it in a word...

A proverb: Curiosity killed the cat...

What I try to enforce me ...

Many of them are not my words, though. And I'm just trying to be...

- Do something what people do not

- Challenge always

- Do not shame if you don't understand, should be shameful if you don't try to understand
 - Think hard, when you have trouble. It is a gift!
 - Suspect yourself and even your supervisor, avoid self confident
 - There should be a way to solve for any problems
 - There is no fruitless effort nor pointless failure, what you learn from that is really precious

- Talk, Listen and Learn with/from others
- Time of adversity provides you true chance
 - Accumulate ideas, time of chance is short
- Always be positive, believe that the dream come true
- Do not be obedient, unless you have reason to do so ______ at last ______

Even if I should pass away tomorrow, I wish I can tell me "You did all your best, you are excellent!"

Lab. Members

	Number	Name			
Research Staff		IWASAKI Masahiko			
(permanent position)		MATSUZAKI Teiichiro			
	9	ISHIDA Katsuhiko			
		KOBAYASHI Yoshio			
		OUTA Haruhiko			
		WATANABE Isao			
		ITAHASHI Kenta			
		OHNISHI Hiroaki			
		SAKUMA Fuminori			
Special/Foreign	3	OHISHI Kazuki			
Postdoctoral Researchers		IIO Masami			
		RISDIANA			
Research Staff		SUZUKI Takao			
(contract)		KOIKE Takahisa			
		KAWAMATA Takayuki			
		ISHII Yasuyuki			
	°	TSUKADA Kyo			
		MIZUNO Katsuya			
		TOMONO Dai			
		YOKOYAMA Koji			

Research Collaborative		ITO Atsuko			
Advisors	4	AKAISHI Yoshinori			
		YAMAZAKI Toshimitsu			
		KAMIMURA Masayasu			
Visiting Researchers	9	YAGI Eiichi			
	4	NAGATOMO Takashi			
Visiting					
Researchers/Technicians	128				
(Lab. Outside)					
Junior Research Associates	3	ITO Satoshi			
		HIRAIWA Toshihiko			
		FUJIWARA Yuya			
Student Trainees		TOKUDA Makoto			
	3	KOU Hiroshi			
		SATAKE Manami			
Student Trainees	05				
(Lab. Outside)	30				
Assistants	0	SATO Junko			
	2	FUJITA Yoko			
	-				

hadron

muon

laser

misc.

Budget status

Fisc	al year	2002	2003	2004	2005	2006	2007	2008	2009
Governent funding (thru RIKEN)	Laboratory funding	15,800	12,440	82,130	50,180	110,950	67,498	47,150	55,150
	RIKEN -RAL funding (annual operating cost)	280,522	252,135	205,224	205,224	205,224	205,224	194,977	175,479
Research grants		4,650	18,800	31,600	31,000	75,840	108,660	97,610	23,500
Commissioned research funding		420	0	0	0	0	0	0	300
Others		0	0	0	0	0	4,545	0	0
		303,394	285,378	320,958	288,409	394,020	387,934	341,745	256,438

2010年2月27日土曜日

Thank you, now time for question!

Fifth harmonics of Kr 1062.75 nm is 212.55 nm!

2010年2月27日土曜日