Status report for range stack holder and Helium bag for D5

2009.8.27 Hiroshi Kou

☆The arrangement plan of the range stack holder

- the beam height is 2m
- •up the GC,Range Stack stand to 185mm(using Fujioka's spacer, 1)
- make stands to up the range stack to 20mm(2)
- make a stand to set up the range stack holder (③)
- adjust 2nd Scintillator to center of this stand (equal to CDC center)
- •re-designed the range stack holder (next page)
- extension of the range counter's booster is completed

\Rightarrow Stands design in Fig.2

 \bigstar size of the range counter and re-design of the range stack holder

\Rightarrow Helium bag design and arrangement

- •Helium bag is designed for reducing multiple scattering in D5 magnet.
- D5 magnet have arch formed hole.

The hole size is 380×120 .

- Helium bag is designed through the magnet's hole.
- The bag's thickness is estimated about the part of passing particles in next page. (the other part is all $50\mu m$)
- The bag is made using Mylar.
- gas connector is connected sinflex tube (called 64)

Part of passing particles

Fig.7 the design of Helium bag

\bigstar resolution of chamber

$$\theta 0 \text{ (only air)} \sim 10^{-3}$$

 $\theta 0 \text{ (Mylar + helium)} \sim 10^{-4}$

θ0 must be under resolution of chamber.
So we plan to put Helium bag in D5 magnet.
Available Mylar's thickness is 38μm or 16μm.

☆estimation of Helium bag's thickness

estimate helium bag's thickness (the part of passing particles)
if the passing particle is kaon and the momentum is 1 Gev/c

• X/X0 is the thickness of the scattering medium in radiation length.

	Air (2200mm)	Mylar(16µm × 2) +He(2200mm)	Mylar(<mark>38µm</mark> × 2) +He(2200mm)
X /X0(only Mylar)		1.12 × 10 ⁻⁴	2.66 × 10 ⁻⁴
X/X0(only gas)	7.237 × 10 ⁻³	0.387 × 10 ⁻³	0.387 × 10 ⁻³
θ0(deflection angle)	9.39 × 10 ⁻⁴	2.16 × 10 ⁻⁴	2.50×10^{-4}

cf. resolution of chamber is 7 $\times 10^{-4}$

Comparing with $\theta 0$, Mylar's thickness is $16\mu m$'s one and $38\mu m$'s one, the difference is a little. So we chose $38\mu m$'s one because of cosidering bag's strength.

\bigstar The arrangement plan about Gauss meter

• In D5 magnet, the magnet's center and passing particle's orbit center is different. The difference of their radius is about 58.3mm and the angle is 68.75° and 55°.

•Gauss meter is necessary to measure magnetic field in D5 magnet. It will be arranged in Fig.9. • The center of magnet's hole is ~1100mm, Gauss meter's connect tube is ~2000mm. • Gauss meter's holder design is in progress. • The holder will be made using non-magnetic material. •I'm going to consider about this problem and make arrangement design soon.

☆time table

- Range stack holder → manufacturing, delivery September 1st
- Helium bag → manufacturing, delivery September 15th
- Helium bag and range stack holder \rightarrow installed until September 30th
- $\label{eq:theta}$ The hole probe's holder \rightarrow design is in progress , installed until September 30th