Kaonic Helium X-rays and Calibration Peaks (Ni and Ti) Simulation

Shinji Okada, Hideyuki Tatsuno

2005.8.18

SDD's intrinsic resolution and white noise are

$$FWHM = 2.355w\sqrt{W_N^2 + \frac{FE}{w}}$$
(1)

where W_N is white noise, F = 0.12 is Fano factor of Si, w = 3.81 eV is average energy for an electron-hole pair creation in Si (77K) and E is X-ray energy. If E = 5898.75 eV and FWHM = 180 eV at Mn K α X-rays, the white noise is

$$W_N^2 = \left(\frac{\text{FWHM}}{2.355w}\right)^2 - \frac{FE}{w}$$

= $\left(\frac{180}{2.355 \times 3.81}\right)^2 - \frac{0.12 \times 5898.75}{3.81}$
= 216.7 (2)

So the total resolution is

$$FWHM = 2.355 \times 3.81 \times \sqrt{216.7 + 0.0315E}$$
(3)

this time, the Kaonic Helium X-rays and calibration peaks (Ti and Ni) are like Figure 1. All spectrums are pure gaussians. The Kaonic Helium X-rays count rate is not considered the increase of the solid angle of tilted SDDs (I will simulate soon). The escape peak intensity is assumed 1/100 of K α or K β X-rays.

Figure 1: Kaonic Helium X-rays and the accidental calibration peaks in K_{stop} timing. KHeX L α , L β and L γ (black), Titanium X-rays K α , K β and K α -escape (red) and Nickel X-rays K α , K β , K α -escape and K β -escape (green).