2006年12月14日(木) 特定領域研究会

# K中間子ヘリウム4原子 3d→2p X線の精密測定

## 東京大学 竜野 秀行 for KEK-PS E570 collaboration

### KEK-PS E570 collaboration list

G. Beer<sup>1</sup>, H. Bhang<sup>2</sup>, M. Cargnelli<sup>3</sup>, J. Chiba<sup>4</sup>, S. Choi<sup>2</sup>,
C. Curceanu<sup>5</sup>, Y. Fukuda<sup>6</sup>, T. Hanaki<sup>4</sup>, R. S. Hayano<sup>7</sup>, M. lio<sup>8</sup>,
T. Ishikawa<sup>7</sup>, S. Ishimoto<sup>9</sup>, T. Ishiwatari<sup>3</sup>, K. Itahashi<sup>8</sup>, M. Iwai<sup>9</sup>,
M. Iwasaki<sup>8</sup>, B. Juhasz<sup>3</sup>, P. Kienle<sup>3</sup>, J. Marton<sup>3</sup>, Y. Matsuda<sup>8</sup>,
H. Ohnishi<sup>8</sup>, S. Okada<sup>8</sup>, H. Outa<sup>8</sup>, M. Sato<sup>6</sup>, P. Schmid<sup>3</sup>,
S. Suzuki<sup>9</sup>, T. Suzuki<sup>8</sup>, H. Tatsuno<sup>7</sup>, D. Tomono<sup>8</sup>,
E. Widmann<sup>3</sup>, T. Yamazaki<sup>8</sup>, H. Yim<sup>2</sup>, J. Zmeskal<sup>3</sup>

Victoria Univ.<sup>1</sup>, SNU<sup>2</sup>, SMI<sup>3</sup>, TUS<sup>4</sup>, INFN(LNF)<sup>5</sup>, Tokyo Tech<sup>6</sup>, Univ. of Tokyo<sup>7</sup>, RIKEN<sup>8</sup>, KEK<sup>9</sup>

## K<sup>-</sup>-<sup>4</sup>He 原子 3d→2p X線



最終原子軌道のシフトと幅を測定しK中間子と ヘリウム原子核との強い相互作用を評価





1st cycle: 75シフト 2nd cycle: 40シフト

Kビーム 650MeV/c @KEK K5 ~5k/spill (4 sec)

合計 4G のK中間子を利用 し、1.5k カウントのK中 間子原子 3d→2p X線を計 測

X線検出器 SDD の in-beam 分解能 185 eV (FWHM)@6.5 keV



## 統計誤差を ~2 eV で決められたが、 実験値付近で理論が別れている



#### 系統誤差の見積もりおよび

#### 精度の高いエネルギー較正が重要

### フラッシュADCのデータを使い エネルギー較正の精度を向上させる

フラッシュADCでみたSDDの波形データ



## PH-ADC ではわからない パイルアップを見ることができる



プレ・パイルアップイベントの除去





エネルギー較正直線 (I)



#### エネルギー較正直線(2)



#### エネルギー較正直線(3)

### パイルアップイベントを

除去した後 + **Cu K**α

Cu Kαの存在比は Ni Kβの20%程



## ピークの中心値をシフトさせる ような要因は他にないか?



## 目的X線の標的内でのコンプトン散乱 計測されるX線自体のエネルギーが小さくなる



#### 液体超流動ヘリウム4標的内でのコンプトン散乱 (密度 0.145g/cm3)



エネルギー損失したX線が測定されるので、 エネルギーの小さい側にテールを引くことになる

### コンプトン散乱 (GEANT4 シミュレーション) K中間子原子X線 (6464 eV) をガウス関数応答



### コンプトン散乱 (GEANT4 シミュレーション) K中間子原子X線 (6464 eV) をガウス関数応答



### コンプトン散乱 (GEANT4 シミュレーション) K中間子原子X線 (6464 eV) をガウス関数応答



あっているかわからない



-repulsive 2p shift (eV)

#### Compton 補正シミュレーション

• 標的内のどこでK中間子が止まったか

keV オーダーの領域で、GEANT4
 シミュレーション (low energy package)
 を信頼できるか



- □ K<sup>-</sup>中間子へリウム原子 3d→2p X線を測定した
   高分解能X線検出器 SDD (185eV FWHM@6.5keV)
   TiとNiの特性X線を用いた同時計測エネルギー較正
- □ フラッシュADCのデータを用い、エネルギー較正 の精度を向上
- 液体超流動ヘリウム標的内で目的X線がコンプトン 散乱され、フィットしたときにピークの中心値を 誤ってしまう可能性があり、今後シミュレーション による正確な補正を試みる