K中間子ヘリウム4原子 3d→2p X線の精密測定 (III)

東京大学 竜野 秀行 for KEK-PS E570 collaboration

2007年3月28日(水)日本物理学会@首都大学東京

Introduction

K⁻-⁴He 原子 3d→2p X線

強い相互作用によるエネルギーシフトと幅

実験の動機1

■ K中間子へリウム原子パズル

実験の動機 2

有限のシフトを観測できれば K中間子原子核の存在を示唆

E570 実験

統計誤差を ~2 eV で決められたが、 実験値付近で理論が区別できない

系統誤差の正確な見積もりが重要

▶ 応答関数などを考慮した非対称関数
によるフィット

液体超流動ヘリウム4標的内でのコンプトン散乱 (密度 0.145g/cm3)

Simulation (3d \rightarrow 2p)

散乱されたX線による ~50 eV 小さいピーク

▶ 再構成した vertex 情報 → 静止Kの位置分布

シフトに対する補正値と系統誤差

	Pileup	Low- energy tail	Compton tail	Total
補正値	-3 eV	+4 eV	+9 eV	+10 eV
系統誤差	±?eV ±?	±?eV	±?eV	±?eV

プラス側 (attractive) に補正される 系統誤差から zero は棄却できない

まとめ

- ▶ 高分解能X線検出器 (SDD)
- ▶ 高統計・高S/N比 → 統計誤差 ~2 eV
- ▶ In-situ エネルギー較正 (Ti, Ni特性X線)

2p準位のシフト |ΔE2p| <~10 eV (**PRELIMINARY**)

▶ K中間子ヘリウム原子パズルを解決

系統誤差のため ΔE2p = 0 eV を棄却することは不可能

Pileup, low-energy tail, Compton tail

KEK-PS E570 collaboration list

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. lio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

K⁻中間子ヘリウム原子パズル

原子軌道のシフトとK中間子原子核

K中間子が強い相互作用によって原子核に束縛さ れることで原子軌道に大きなシフトと幅ができる

Y.Akaishi, EXA05 proceedings (2005)

S.Baird et al., Nucl.Phys.A392 (1983) 297.

1. high resolution

Silicon Drift Detectors (SDDs) produced by KETEK GmbH

small anode (small detector capacitance)

high resolution (185 eV FWHM @ 6.4 keV)

large effective area (100 mm²) small detector thickness (0.26 mm)

過去の実験条件との比較

		E570	過去の実験
X線検出器		"SDD" (Silicon Drift Detector)	Si(Li) detector
	分解能 (FHWM) @6.5keV	~185eV	~300eV
	有効領域	100mm ² * 8 SDDs	300 mm ²
	検出器の厚さ	0.26mm	~4mm
エネルギー較正		In-situ calib.	No in-situ calib.
反応点再構成による		Yes	No
イベント選択			

Fiducial volume cut

静止Kイベントの選択

Typical "T0 ADC vs. Z vertex" correlation -- T0 ID=4 (Run419 (typical 1 run))--

E570 1st cycle (2005.Oct)

E570 2nd cycle (2005.Dec)

フラッシュADCでみたSDDの波形データ

PH-ADC ではわからない パイルアップを見ることができる

プレ・パイルアップイベントの除去

