K中間子ヘリウム4原子 X線の精密測定 (IV)

東京大学 竜野 秀行 for KEK-PS E570 collaboration

2007年9月21日(金)日本物理学会@北海道大学, 21pZD11

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. lio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

Contents

最終結果と考察

K⁻-⁴He 3d→2p X-ray

K⁻中間子とヘリウム4 原子核の 強い相互作用によるエネルギー準位のシフトと幅

He

Kaonic helium puzzle

A possible large shift

赤石によるチャンネルカップリング計算 (KN チャネル - Σπ 崩壊チャネル)

|ΔE_{2p}| < ~10 eV 最大10 eVという 有限のシフトを予言

7

Motivation

● K中間子原子へリウムパズル

- シフト ~0 eV → パズル解決
- シフト ~-40 eV 🔶 未知なる構造?
- K中間子原子核 (deeply bound k)
 - |シフト| 10 eV → K中間子原子核を示唆

KEK-PS E570実験 目標:統計誤差 2 eV 世界最高精度で2p準位のシフトを測定

E570 実験

1st cycle : 2005年10月 ~520 時間 2nd cycle : 2005年12月 ~260 時間

実験手法

1. 高エネルギー分解能
 2. 低バックグラウンド (高S/N比)
 3. In-situ エネルギー較正

1. High energy resolution

シリコンドリフトX線検出器 (SDDs) KETEK GmbH 社製

● 極小アノード

→ 検出器キャパシタンスが小さい

大きな有効面積 100 mm² 厚さ 0.26 mm

N2-#4-03.03

● 高分解能

190 eV FWHM @ 6.4 keV

Iow background in-situ energy calibration

解析II

スペクトルの解釈

7. 標的内での Compton 散乱
 7. パイルアップの効果

5. SDDの応答関数

Compton scattering

Pileup effect

Response function

Summary

● E570 実験

- 1. 高エネルギー分解能 : シリコンドリフトX線検出器
- 2. 高 S/N 比:反応点再構成、静止K⁻イベント選別
- 3. In-situ エネルギー較正
- 解析 (スペクトルの解釈)
 - 1. 液体ヘリウム標的内でのCompton散乱: 静止K⁻の位置をインプットにしたモンテカルロシミュレーション
 - 2. 高レート荷電粒子によるパイルアップ:

フラッシュADCを用いた解析と高統計較正データのフィット

3. SDD の応答関数: Tail + Shelf

Kaonic atoms

Batty, Friedman and Gal, Phys. Rep. 287 (1997) 385

Past Experiments.

測定器:Si(Li) 分解能 (FWHM) ~300 eV @ 6.4 keV

シグナルをとりながらのエ ネルギー較正をしていない

シグナルに対して大きな バックグラウンド

精密測定が必要

セットアップは E549 とほぼ同じ (21pZD-4,5)

K⁻運動量 ~660 MeV/c

- K⁻収量 ~5k/spill, π/K 比~200
- トリガー ~1k/spill, アクセプト ~76%

期間

K-⁴He 3d→2p

1st cycle : 2005年10月 ~520 時間, (X線収量 900) 2nd cycle : 2005年12月 ~260 時間, (X線収量 950)

Gain drifts

KHX

