21pZD-12

2007年9月21日 日本物理学会 第62回年次大会 @ 北海道大学

K中間子ヘリウム4原子 X線の精密測定(V)

理研 岡田 信二 for KEK-PS E570 collaboration

KEK-PS E570 Collaboration List

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. Iio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Univ. of Victoria¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

Contents

* 導入 --- K中間子ヘリウムパズル, 動機 ---* 実験 --- KEK-PS E570 ---

* 解析

 $\langle \bullet \rangle$

前半:前講演(竜野)

* スペクトルフィット

後半:本講演

* 系統誤差

* 最終結果と考察

スペクトルフィット

メインピーク以外の フィットパラメータの定義

メインピーク以外の フィットパラメータの定義

メインピーク以外の フィットパラメータの定義

メインピーク以外の フィットパラメータの定義

メインピーク以外の フィットパラメータの定義

 $\langle \bullet \rangle$

1つのピークに対して、

		メインピーク					検出器応答			パイルアップ効果			コンプトン散乱効果			
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	ß	関数
	3d-2p	1	1									1	1	1	1	
K-⁴He	4d-2p	_1	1		-							1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	. 7	E		-	3	1	1	2		1	4	R	1	5
	Κα	1		3						5	1			0		3
特性	Kβ	1	-													
X線	Κα	1	-		-											
	NI Kβ	1	-													

 $\langle \bullet \rangle$

シミュレーションにより

全16パラメータを決定

	メインピーク				検出器応答			パイルアップ効果			コンプトン散乱効果				BG	
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	β	関数
	3d-2p	1	1									1	1	1	1	
K-4He	4d-2p	1	1		1							1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	. 1	E		1	2		1	2	1	1	4	6	1	2
	Τ : Κα	1		3			5			D				0		3
特性	Kβ	1	-													
X線	Κα	1	-													
	Kβ	1	-													

(+)

		メインピーク					検出器応答			パイルアップ効果			コンプトン散乱効果			
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	ß	関数
	3d-2p	1	1									1	1	1	1	
K-⁴He	4d-2p	_1	1		-							1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	. 1	E		-	9		-	2	-	1	10	1	1	5
	_ Κα	1		3		1	3			5	1			J	Ċ	3
特性	Kβ	1	-													
X線	Κα	1	-													
	Kβ	1	-													

	メインピーク				-	検出器応答			パイルアップ効果			コンプトン散乱効果				BG
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	ß	関数
	3d-2p	1	1									1	1	1	1	
K-⁴He	4d-2p	1	1									1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	- 1	E			9			7	-	1	10	1	1	2
	_ Κα	1		3		1	5			L .	1			J	Ċ	3
特性	Kβ	1	-													
X線	Κα	1	-		-											
	ΝΙ Kβ	1	-													

 $\langle \bullet \rangle$

 $\langle \bullet \rangle$

		メインピーク					検出器応答			パイルアップ効果			コンプトン散乱効果			
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	β	関数
	3d-2p	1	1									1	1	1	1	
K-4He	4d-2p	1	1		-							1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	. 1	6		6	5	-	\bigcirc	7		1	10	1	1	2
	ΤΙ Κα	1		J			5		U	L .	1					3
特性	Kβ	U	-		_								_			
X線	Νι Κα	1	-													
	Kβ	(1)														

セルフトリガーイベントのスペクトルフィット

▶検出器の応答関数 8パラメータ決定 ▶エネルギー依存の検出器分解能 等 $\Delta E(\text{FWHM}) = 2.35\omega \sqrt{W_N^2 + \frac{FE}{M}}$

		メインピーク					検出器応答			パイルアップ効果			コンプトン散乱効果			
			Vo	iqt		Tail+Shelf			Gauss			Tail				2次
		area	mean	σ	Г	area (tail)	area (shelf)	β	area	mean	σ	area	mean	σ	ß	関数
	3d-2p	1	1									1	1	1	1	
K-⁴He	4d-2p	_1	1		-							1	1	1	1	
X線	5d-2p	1	1									1.	1	1	1	
	6d-2p	1	· 1	5					-	\cap	1	1	10	1	1	2
	_ Κα	1		F		1			1		1					3
特性	Kβ	1	-													
X線	Κα	1	-													
	ΝΙ Kβ	1	-													

 $\langle \bullet \rangle$

 $\langle \bullet \rangle$

	メインピーク												
			Voigt										
			area	mean	σ	Г	関数						
	3d	-2p	1	1									
K-4He	4d	-2p	.1	1									
X線	5d	-2p	1	1									
	6d	-2p	1	- 1			2						
	т:	Kα	1		-		э						
特性		Kβ	-	-									
X線	NI:	Kα	1	-		-							
	INI	Kβ		-									

◇ K-4He X線 4つの遷移エネルギーと収量
 ◇ 自然幅
 ◇ バックグラウンド
 ◇ 特性X線の収量
 14フリーパラメータ

遷移エネルギー

	測定値 [eV] (統計誤差のみ)	EM計算值 [eV]
3d→2p	6467.0 ± 2.5	6463.5
4d→2p	8723.5 ± 4.6	8721.7
5d→2p	9761.4 ± 7.6	9766.8

EM計算: T. Koike, Private communication

- Vacuum polarization
- Nuclear finite size effect
- Relativistic recoil effect
- Electron screening effect
- Totally corrected energy levels を考慮。

cf. J.P. Santos et al. Phys. Rev. A71, 032501 (2005)

これまで印刷公表された K-He原子レベルのEM計算値は、 0.1eVの桁まで記されていない

2p レベルシフトの導出

主量子数 n >2のエネルギー準位の 強相互作用シフトが無視できると仮定:

 $\Delta E_{2p} = (E_{nd}) - E_{(2,p)}) - (E_{nd}^{EM} - E_{(2,p)}^{EM})$

2p レベルシフトの導出

主量子数 n >2のエネルギー準位の 強相互作用シフトが無視できると仮定:

 $\Delta E_{2p} = (E_{nd}) - E_{(2,p)}) - (E_{nd}^{EM} - E_{(2,p)}^{EM})$

全遷移エネルギーを用い 2pレベルシフトを導出:

	測定值 [eV]	EM計算值 [eV]	
3d→2p	6467.0 ± 2.5	6463.5	$\square \land E_{-} = 2 + 2 \text{ (otat) } a \text{ (}$
4d→2p	8723.5 ± 4.6	8721.7	$\Delta E_{2p} = 2 \pm 2 \text{ (Stat) ev}$
5d→2p	9761.4 ± 7.6	9766.8	

注) K中間子質量の誤差起因のEM計算値の誤差は、非常に小さい 現在のPDG値 493.677(16) MeV/c² の1σのずれは、ΔE_{2p}の約0.2eVずれに相当

 $\langle \bullet \rangle$

・>コンプトン散乱効果

 \diamond

· 冷検出器応答関数 (tail · shelf関数)

・トパイルアップの効果

・>コンプトン散乱効果

 $\langle \bullet \rangle$

LECS(Low Energy Compton Scattering)パッケージ: ▶(束縛)コンプトン・レイリー散乱の⁴Heに対する**断面積の誤差は数% ±5%の収量変化 = ~ ± 0.4 eVの変化**

· 検出器応答関数 (tail · shelf関数)

・♪パイルアップの効果

・ トコンプトン散乱効果

 $\langle \bullet \rangle$

LECS(Low Energy Compton Scattering)パッケージ: ▶(束縛)コンプトン・レイリー散乱の⁴Heに対する**断面積の誤差は数%**

±5%の収量変化 = ~ ±0.4 eVの変化

· そ検出器応答関数 (tail · shelf関数)

メインピークに対する収量(Gain)比:

- セルフトリガーのフィットから導出
- ▶ 中心値はTi・Niの特性X線ピークに対して共通として求める
- ▶ エネルギー依存性や、tail関数のみを導入した場合等を考慮

~ ± 1 eVの変化

・トパイルアップの効果

・ トコンプトン散乱効果

 $\langle \bullet \rangle$

LECS(Low Energy Compton Scattering)パッケージ: ▶(束縛)コンプトン・レイリー散乱の⁴Heに対する**断面積の誤差は数%**

±5%の収量変化 = ~ ±0.4 eVの変化

· そ検出器応答関数 (tail · shelf関数)

メインピークに対する収量(Gain)比:

- セルフトリガーのフィットから導出
- ▶ 中心値はTi・Niの特性X線ピークに対して共通として求める
- ▶ エネルギー依存性や、tail関数のみを導入した場合等を考慮

~ ± 1 eVの変化

・トパイルアップの効果

パイルアップ収量比の誤差:

▶FADC解析におけるパイルアップイベント選別の誤差から±10%

±10%の収量変化 = ~ ±0.4 eVの変化

3d->2p 遷移エネルギー: 6467 ± 3 (stat) ± 2 (syst) eV

全遷移エネルギーを用い、

2pレベルシフト ΔE_{2p}: 2 ± 2 (stat) ± 2 (syst) eV

注) 誤差棒は、統計/系統誤差は自乗和としている

Phys. Lett. B 653 (2007) 387

Available online at www.sciencedirect.com

Physics Letters B 653 (2007) 387-391

PHYSICS LETTERS B

2007年8月受理

www.elsevier.com/locate/physletb

Precision measurement of the $3d \rightarrow 2p$ x-ray energy in kaonic ⁴He

S. Okada ^{a,*}, G. Beer ^b, H. Bhang ^c, M. Cargnelli ^d, J. Chiba ^e, Seonho Choi ^c, C. Curceanu ^f, Y. Fukuda ^g, T. Hanaki ^e, R.S. Hayano ^h, M. Iio ^a, T. Ishikawa ^h, S. Ishimoto ⁱ, T. Ishiwatari ^d, K. Itahashi ^a, M. Iwai ⁱ, M. Iwasaki ^{a,g}, B. Juhász ^d, P. Kienle ^{d,j}, J. Marton ^d, Y. Matsuda ^a, H. Ohnishi ^a, H. Outa ^a, M. Sato ^{g,1}, P. Schmid ^d, S. Suzuki ⁱ, T. Suzuki ^a, H. Tatsuno ^h, D. Tomono ^a, E. Widmann ^d, T. Yamazaki ^{a,h}, H. Yim ^c, J. Zmeskal ^d

 ^a RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan
 ^b Department of Physics and Astronomy, University of Victoria, British Columbia V8W 3P6, Canada ^c Department of Physics, Seoul National University, Seoul 151-742, South Korea
 ^d Stefan Meyer Institut für subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna, Austria ^e Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan ^f Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Italy
 ^g Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan ^h Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ⁱ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan ^j Physik Department, Technische Universität München, D-85748 Garching, Germany

Received 30 June 2007; accepted 13 August 2007

Available online 17 August 2007

Editor: V. Metag

まとめ

* K中間子ヘリウム4原子X線を測定

* 高分解能: 190 eV @ 6.5keV (SDD使用)

* 高S/N比:静止K-イベント選定

* 高精度エネルギー較正:特性X線(Ti, Ni)を用いた in-situ エネルギー較正

* 3d→2p遷移エネルギー: 6467 ± 3(stat) ± 2(syst) eV

* 2pエネルギーシフト: 2 ± 2 (stat) ± 2 (syst) eV

* 「K中間子へリウムパズル」に終止符

BACKUP SLIDES

メイ	ンピ・	ーク以外から	の寄	5
K-4He X-ray 3d -> 2p	×-	インピーク メイン	Other effect Main peak ピークに対	^{zt} 、 する収量比
E			cycle 1	cycle 2
		コンプトン散乱効果	14	%
		検出器応答関数 (tail&shelf)	4 %	3 %
Ē		パイルアップの効果	11 %	6 %