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A number of lines, logically belonging together, can be
grouped in a multiplet, or peak group, e.g. K˛1, K˛2 or all
the K lines of an element. To describe a (part of a) spectrum,
a number of such peak groups, e.g. for fitting the K-peaks,
the K˛ and Kˇ peak group of each element is required.
The contribution of all those peaks to the observed signal at
channel i can then be written as
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were Aj is the area of the peak group j and Rjk the relative
intensity of line k in peak group j. The first summation runs
over all n peak groups and the second over all np(j) lines in
peak group j.

Equation (1) implies, that not the position and width
of each peak are fitted individually, but rather that the
energy calibration and resolution calibration parameters are
optimised during the fit, so that each x-ray line fits the right
position in the spectrum with the appropriate width. The
energy calibration relates the energy to the channel number
by the simple linear relation
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where Zero is the energy of the first channel in the spectrum.
The width of the peak #jk includes the electronic noise
contribution and the intrinsic detector resolution due to
electron–hole pair production:
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where Noise is the electronic noise contribution expressed as
full width at half-maximum (FWHM) in keV, Fano represents
the Fano factor (¾0.1 in Ge) and ε is the average energy to
create a charge carrier pair in the detector (3.6 eV in Ge).
When fitting a spectrum, the four calibration parameters
Zero, Gain, Noise and Fano are optimized. Thus, when fitting
N peak groups using Eqn (2), a total number of N C 4
parameters are required: one for each area and four for the
calibration parameters. A detailed description of the fitting
procedure including aspects about the continuum model
and the Marquardt algorithm used for the non-linear fitting
procedure can be found in the literature.1,2,5,12 By using
a Gaussian function, the implementation of a peak model
in a fit procedure is already facilitated. However, a more
correct approach would take into account the Lorentzian
nature of x-rays. A Lorentz distribution convoluted by
a Gaussian detector response results in a Voigtian peak
shape. Campbell and Wang have pointed out that the
major part of the low-energy tailing can be ascribed to the
Lorentzian component of the actual lineshape and may have
a significant influence on the determination of low-energy
tailing contributions.17

Shelf and tail functions
According to work performed by many authors,3,4,6,14,15 a
more accurate description of the peak shape can be obtained
if for each a shelf (or shelf) and a tail function are included.

A model that would describe then the N groups of peaks can
be written as:
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where S!i, Ejk" and T!i, Ejk" are the normalized shelf and
the tail distribution, respectively. The contributions of the
shelf and the tail with respect to the main Gaussian peak
are given by the shelf fraction fS and the tail fraction fT,
respectively.

The shelf is the result of the convolution of a shelf
function at the peak centroid convoluted with a Gaussian
and can therefore be expressed as
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The tail distribution is the convolution of an exponential
function with a Gaussian and given by
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with ˇ is the width or slope parameter of the tail function. The
complementary error function, appearing in both equations,
comes from the convolution with the Gaussian and results
in rounded-off edges at the centroid of the peak.

The introduction of the shelf function adds one extra
parameter, the shelf fraction fS, whereas the tail function
requires two parameters: the tail fraction fT and the tail
width ˇ. Since three extra parameters per group of peaks
are introduced, the fitting of N groups of peaks would
require a total of 4N C 4 parameters. Optimizing each of
those parameters in a non-linear least-squares procedure
would be very difficult. For example, fitting the K˛ and
Kˇ peaks of Cr, Fe, Ni in a stainless-steel spectrum would
require a total of 28 parameters, exclusive of any parameters
to describe the continuum. Since the shelf and tail parameters
account for small effects at the base of often large and
strongly overlapping peaks, the chance that they would
converge to a false minimum with physically meaningless
parameter values is high. It is known, however, that the shelf
and tail parameters are dependent on the energy. By using
simple functions describing the relationship between those
parameters and the energy, the number of fitting parameters
can be reduced significantly.

Parameterization of the shelf and tail parameters
Many of the parameterizations proposed in the literature use
similar functions to describe the parameters as a function
of the energy. An exponential function is often used to
model the shelf parameters, while polynomials are mostly
used in the case of the tail parameters. Some of them
are given below. The shelf fraction, tail fraction and tail
width parameterizations are denoted by SF, TF and TW,
respectively.

According to Gardner and Dostner,16 the shelf and tail
parameters deduced for an Si(Li) detector can be modelled
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