Silicon Drift Detectors for the Precision Spectroscopy of Kaonic Helium $3d \rightarrow 2p$ X-rays

THE UNIVERSITY OF TOKYO

H. Tatsuno (for KEK-PS E570 collaboration)

The University of Tokyo

Abstract

The strong-interaction shift of $3d \rightarrow 2p$ x-rays of kaonic helium atoms was measured with a statistical accuracy of ~2 eV using silicon drift x-ray detectors (SDDs) by the KEK-PS E570 collaboration. This precision was realized by using recently developed SDDs. The SDDs are characterized by: **1)** the low output capacitance which is almost independent of the active area, **2)** the thin active layer. The low output capacitance brings benefits of much better resolution than conventional photodiodes, and the thin active layer reduces the continuum background caused by the soft-Compton process.

1. Silicon Drift Detector "SDD"

Silicon drift detector is a

semiconductor x-ray detector. Its charge collection mechanism shown in Fig.1 makes it possible to keep the anode size very small. This results in a small detector capacitance and a good energy resolution as well as its large effective area. In addition, the small anode permits a reduction of the active layer thickness which helps to reduce continuum background

caused by the soft-Compton process.

• The readout system using a charge sensitive preamplifier and the typical signal pulse measured by the flush ADC are shown in Fig.2.

2. Energy and time resolution of the SDD used in the E570 experiment

The typical energy resolution at 85 K is 182 eV (FWHM) at 5.9 keV (Mn K-alpha x-ray), which corresponds to the energy resolution of 185 eV (FWHM) at the kaonic helium 3d→2p transition energy (Fig.3a).
The time resolution is ~140ns (Fig.3b).

3. Energy calibration and its stabiltiy

• In-beam energy calilbration was realized by the interpolation method using Ti and Ni characteristic x-rays which were simultaneously measured with the kaonic helium x-rays (Fig.4).

• The long-term stablity was ensured in Fig.5, gain drifts of the SDD are correctable at 8 hour intervals.

4. Preliminary results of the E570 experiment

• Preliminary results are shown in Fig.6, the peak of the kaonic helium $3d \rightarrow 2p$ x-ray is shown close up. The past experimental shift results (-40 eV) which has been known as "the kaonic helium puzzle" were clearly rejected.

• In total, about 1500 events were accumlated after fiducial volume cuts were applied. The statistical error of the shift is estimated to be $\sigma \sim 2$ eV.

• The systematic error estimation is now in progress.

previous experiments.

Summary

The strong-interaction shift of $3d \rightarrow 2p$ x-rays of kaonic helium atoms was measured with a statistical accuracy of ~2 eV using the SDDs. The past experimental results which have been known as "the kaonic helium puzzle" were cleary rejected.

