The kaonic helium puzzle

Ryugo S. Hayano University of Tokyo

Chiral 07, Nov 14, 2007

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 653 (2007) 387–391

www.elsevier.com/locate/physletb

Precision measurement of the $3d \rightarrow 2p$ x-ray energy in kaonic ⁴He

S. Okada ^{a,*}, G. Beer^b, H. Bhang^c, M. Cargnelli^d, J. Chiba^e, Seonho Choi^c, C. Curceanu^f,
Y. Fukuda^g, T. Hanaki^e, R.S. Hayano^h, M. Iio^a, T. Ishikawa^h, S. Ishimotoⁱ, T. Ishiwatari^d,
K. Itahashi^a, M. Iwaiⁱ, M. Iwasaki^{a,g}, B. Juhász^d, P. Kienle^{d,j}, J. Marton^d, Y. Matsuda^a,
H. Ohnishi^a, H. Outa^a, M. Sato^{g,1}, P. Schmid^d, S. Suzukiⁱ, T. Suzuki^a, H. Tatsuno^h, D. Tomono^a,
E. Widmann^d, T. Yamazaki^{a,h}, H. Yim^c, J. Zmeskal^d

^a RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan

^b Department of Physics and Astronomy, University of Victoria, British Columbia V8W 3P6, Canada

^c Department of Physics, Seoul National University, Seoul 151-742, South Korea

^d Stefan Meyer Institut für subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna, Austria

^e Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan

^f Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Italy

^g Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

^h Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

ⁱ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

^j Physik Department, Technische Universität München, D-85748 Garching, Germany

Received 30 June 2007; accepted 13 August 2007

What has been the problem?

"repulsive"

X-ray energy reduced (shift sign negative)

"attractive"

X-ray energy increased (shift sign positive)

| - |97|

Kaonic Helium X-ray Spectroscopy

kaonic atom strong-interaction shift

C.J.Batty, E. Friedman, A. Gal, Phys. Reports 287, 385 (1997)

A new experiment with a detector of - high resolution and - good energy calibration is urgently required.

C.J. Batty, Nucl. Phys. A508 (1990) 89c

Renewed interest

After some 15 years, Akaishi-Yamazaki prediction convinced us (once again) the importance of the measurement

Akaishi EXA05

optical model

$$U^{\text{opt}}(r) = -(U_0 + iW_0)F(r)$$
$$F(r) = \frac{1 + w_0(r/R_0)^2}{1 + \exp((r - R_0)/a_0)}$$

$$\left\{-\vec{\nabla}^2 + 2\mu(V_c + U^{\text{opt}} - \epsilon) - (V_c - \epsilon)^2\right\}\Psi = 0$$
$$V_c: \text{ Coulomb}$$

optical model

shallow potential

deep potential

Akaishi EXA05

Akaishi's coupled-channel model calculation

coupling to the $\pi^- + \Sigma^4$ He channel

diagonal: $U_D = -U_0 F(r)$ coupling: $U_C = U_{coupl} F(r)$

$$\left\{ -\vec{\nabla}^2 + 2\mu (V_c + U_D - \epsilon) - (V_c - \epsilon)^2 \right\} \Psi + 2\mu U_C \Phi = 0$$

$$\left\{ -\vec{\nabla}^2 + 2\mu' (Q - \epsilon) - (Q - \epsilon)^2 \right\} \Phi + 2\mu' U_C \Psi = 0$$

$$Q \equiv M_{4} He} + m_{\pi^-} - M_{4} He - m_{K^-}$$

Akaishi EXA05

Akaishi's prediction

(accommodates kaonic nuclear states)

 U_c fixed to I 20 MeV, U_0 varied

Kaonic Helium X-ray Spectroscopy

E570 Methods I. high resolution 2. good energy calibration 3. low background

I. High Resolution SDD (silicon drift detector)

Produced by KETEK GmbH

electrons drift to a small anode (small capacitance)

high resolution (185 eV FWHM @ 6.4 keV), despite large area (100 mm²) Si(Li): 300-350 eV

8 such SDDs used in E570

2: in-situ calibration, 3: fiducial selection

Fiducial selection

front view

side view

Timing selection

SDD Self trigger

Kaon trigger, fiducial & timing cut

Okada et al., PLB 653 (2007) 387

understading the resolution function (critical!)

Pileup (typical flash-adc waveforms)

flash ADC baseline vs energy

such shape & fraction used to fit the K⁻He X-rays

Compton tail

GEANT4

past exp : Baird et.al. NPA392, 297 (1983)

statistics	×3
s/n ratio	×6
resolution	×2

$\Delta E_{2p}=2 \pm 2(stat) \pm 2(sys) eV$

Okada et al., PLB 653 (2007) 387

theory error (~0.2 eV) dominated by K mass error

Koike

corresponds to ±1 eV in X-ray energy

Summary

 Now the 2p shift is consistent with all theory calculations

No more Kaonic Helium puzzle
Width also appears to be small
large K⁻³He shift still a possibility

J-PARC EI7 will measure K⁻³He

J-PARC EI7 will measure K⁻³He

The proud team of E570

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. Iio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹