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Abstract

We have measured the Balmer-series x-rays of kaonic 4He atoms using novel large-area silicon drift x-ray detectors in order to study the
low-energy K̄-nucleus strong interaction. The energy of the 3d → 2p transition was determined to be 6467 ± 3(stat) ± 2(syst) eV. The resulting
strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory
and experiment.
 2007 Elsevier B.V. All rights reserved.

PACS: 13.75.Jz; 25.80.Nv; 36.10.Gv
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1. Introduction

The measurement of the strong-interaction energy-level shift
and width of kaonic atom x-rays offers a unique possibility to
precisely determine the K̄-nucleus strong interaction in the low
energy limit. Therefore many experiments have been performed
to collect data on a variety of targets from hydrogen to uranium.

* Corresponding author.
E-mail address: sokada@riken.jp (S. Okada).

1 Present address: RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan.

It has been known that most of the available kaonic-atom data
can be fitted fairly well for Z ! 2 by optical-potential models
[1] with the exception of kaonic helium and oxygen.

The strong-interaction shift of the 2p level !E2p for kaonic
4He has been previously measured in three experiments. Note
that !E2p is defined as !E2p ≡ −(E(2,p) − EEM

(2,p)), where
E(n,l) is the energy of the level with principal quantum number
n and the orbital angular momentum l, and EEM

(n,l) is the energy
calculated using only the electromagnetic interaction (EM). The
average of the three previous results gives !E2p = −43 ± 8 eV
[2–4], while most of the theoretical calculations give !E2p ∼
0 eV [5–7] (e.g. !E2p = −0.13 ± 0.02 eV [5]). They disagree
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A new experiment with a detector of
- high resolution and 
- good energy calibration 
is urgently required. 

C.J. Batty, Nucl. Phys. A508 (1990) 89c
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Y. Akaishi

This decay-channel centrifugal effect clearly shows a limitation of so-called ”global-fit”
approach [10] done by using all the available kaonic atom data on a same footing. Global
optical potentials with l-independent imaginary part cannot reproduce any anomalous
l != 0 level shift which appears in the ”proximity” region. The global-fit optical potential
should not be applied at least to the problem of the 2p level shifts of the K−-3,4He atoms.

3.1 K̄ nuclear bound state

It is known that the K̄N interaction is strongly attractive in the T = 0 state below
the Λ(1405) resonance and brings about a dropping K− mass in nuclear matter [13, 14].
This is connected to an exciting issue of whether kaon condensation in dense nuclear
matter like compact star could occur [15, 16, 17]. Recently, few-body K̄ nuclear systems
have been investigated theoretically [18, 19, 20, 21] (see also [22] as an early work) based
on phenomenological K̄N interaction which reproduces low-energy scattering data [23],
kaonic hydrogen data [24, 25] (see also [26] as the most recent data) and the binding
energy and width of Λ(1405).
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Figure 3: Real-part potentials of K−-3He and K−-4He strong interaction. The solid and
dotted lines are the cases of shrunk and unchanged nucleon cores, respectively.
Nuclear s-wave bound states are shown. Atomic level shifts provide information
about the potential strength from the unchanged cores as indicated by the
arrows.

Figure 3 shows the potentials of K−-3He and K−-4He calculated in Ref.[18]. Since a
deeply bound K̄ contracts the nucleon core, the kaonic nuclei give us potential information
about the shrunk-core cases denoted by the solid lines. On the other hand, the kaonic
atoms provide information on the unchanged-core potentials shown by the dotted lines,
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Uopt(r) = −(U0 + iW0)F (r)

F (r) =
1 + w0(r/R0)2

1 + exp((r −R0)/a0)

{
−!∇2 + 2µ(Vc + Uopt − ε)− (Vc − ε)2

}
Ψ = 0

Vc : Coulomb
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Akaishi’s coupled-channel 
model calculation



coupling to the π− +4
Σ He channel

{
−!∇2 + 2µ(Vc + UD − ε)− (Vc − ε)2

}
Ψ +2 µUCΦ =0

{
−!∇2 + 2µ′(Q− ε)− (Q− ε)2

}
Φ +2 µ′UCΨ = 0

Q ≡M4
ΣHe + mπ− −M4He −mK−

diagonal: UD = −U0F (r)
coupling: UC = UcouplF (r)
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| shift | up to ~ 10 eV 

Akaishi’s prediction 
(accommodates kaonic nuclear states)

Uc fixed to120 MeV, U0 varied

at
tr

ac
ti
ve
!

#
re

p
u
ls

iv
e

"
E

2
p
 (

eV
)



2
p

 s
h

if
t 

(e
V

)
50

25

0

-25

-50

-75

-100
1970 1980 1990 2000 2010

Publication Year

re
p

u
ls

iv
e

World average

Kaonic Helium X-ray Spectroscopy

E570 goal (2 eV)

"
E

2
p
 (

eV
)



$%
E570 Methods

1. high resolution
2. good energy calibration

3. low background



2 9 8  S. Baird et at. / Exotic atoms 

2. Experiment 

The measurements  were carried out using the K23 single stage electrostatically 

separated low m o m e n t u m  hadron beam from the C E R N  PS. For this experiment 

the beam-l ine was tuned to a m o m e n t u m  of 200 M e V / c  for incident pions; the 

intensity was about 40 000 ~- in flight per beam burst with an average of 2.4 

unwanted particles (mostly electrons and muons)  per incident pion. The beam burst 

duration was typically 500 ms and the average repetition rate 1 beam burst every 

3.6 sec. For kaons the incident m o m e n t u m  was 600 M e V / c ,  the average intensity 

5 0 0 0 / b e a m  burst and the 7r/K ratio 35 : 1. For antiprotons again a m o m e n t u m  of 

600 M e V / c  was used, the average intensity was 1800 incident antiprotons per 

beam burst and the 7r/~ ratio was 60 : 1. 

The apparatus was a modified version of that used in a previous and similar 

experiment 2) carried out using the accelerator N I M R O D  at the Rutherford Labora- 

tory. (See fig. 1.) For kaon and antiproton beams a pair of scintillation counters 

B1 and B3 separated by 5 metres were used to identify the incident particles using 
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t ~LfBe WINDOW 
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Fig. 1. E x p e r i m e n t a l  apparatus .  
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electrons drift to a small 
anode (small capacitance)

high resolution (185 eV 
FWHM @ 6.4 keV), despite
large area (100 mm2)
Si(Li): 300-350 eV

8 such SDDs used in E570Produced by KETEK GmbH

1. High Resolution 
SDD (silicon drift detector)
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±10 eV [9]. Although this is still smaller than the experimental value of −43
eV, such a non-zero shift, if established, provides a positive support for the
‘deep’ K̄-nucleus potential. This situation motivated us to measure the en-
ergy of Balmer x-rays of the kaonic 4He atom with much improved precision.
A result has been reported as Letter [10].

2 Experimental method

The experiment E570 was carried out at the K5 beamline of the KEK 12-GeV
proton synchrotron (PS). The experimental apparatus shown in Fig. 1 was
essentially the same as that of the former KEK-PS E549 experiment except
for the inclusion of x-ray detectors and energy calibration foils in the helium-
target cryostat, and the description can be found in Ref. [11,12]. Here we give
a short account.

The kaonic 4He atoms were produced by means of the stopped-K− reaction us-
ing a superfluid 4He target (cylindrical shape 15 cm long and 20 cm in diameter

  Z
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Fig. 1. A partially cutaway drawing of the E570 experimental setup.
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Fig. 3. A typical density plot between the x- and y-coordinate of the reaction vertex.
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the light output on the T0. For this plot, x-y vertex cut of

√
x2 + y2 < 11.0 cm has

already been applied.

3.1.3 Timing selection

The timing of the stopped-K− events were selected using SDD timing infor-
mation to reduce the accidental background. The top panel of Fig. 5 shows a
typical correlation plot of the SDD timing (time difference between kaon ar-
rival and x-ray detection) vs SDD pulse height, which exhibits a vertical band
due to kaon-induced x-rays. Since leading-edge-type discriminators were used
to construct the SDD self triggers, the band is curved slightly as the pulse
hight decreases. The circled events are due to the 3d → 2p kaonic-helium x-
rays. The titanium and nickel characteristic x-rays appear as thin horizontal
lines, due to accidental charged particle hits on the metal foils.
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3.1.3 Timing selection

The timing of the stopped-K− events were selected using SDD timing infor-
mation to reduce the accidental background. The top panel of Fig. 5 shows a
typical correlation plot of the SDD timing (time difference between kaon ar-
rival and x-ray detection) vs SDD pulse height, which exhibits a vertical band
due to kaon-induced x-rays. Since leading-edge-type discriminators were used
to construct the SDD self triggers, the band is curved slightly as the pulse
hight decreases. The circled events are due to the 3d → 2p kaonic-helium x-
rays. The titanium and nickel characteristic x-rays appear as thin horizontal
lines, due to accidental charged particle hits on the metal foils.
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Fig. 5. (a) A typical contour plot of the kaon-SDD time difference vs SDD pulse
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The bottom panel of Fig. 5 shows a slewing-corrected time spectrum. Time
resolution of the SDD was ∼ 160 ns (σ) at ∼83 K, which reflected the drift-time
distribution of the electrons in the SDD. Data within ± 2 standard deviations
from the peak center were selected.

3.2 Energy calibration

The energy calibration parameters for individual x-ray detectors were deter-
mined using titanium and nickel characteristic x-rays which were recorded in
the self-tigger data. The data were taken in every 2 hours, so-called “run.”
Some runs were packed according to cycle, because at least 20-hour data were
needed to get accurate calibration parameters and to scan the gain drifts of
x-ray detectors correctly. In cycle 1, only 3 out of 8 SDDs yielded useful data;
the faulty detectors were then replaced, and 7 SDDs were functional in cycle
2.

Figure 6 shows typical ADC spectra of two SDDs. Titanium and nickel Kα

peaks were clearly observed. Typical yields of titanium Kα peaks are 5 ×102

events per hour for each SDD. A channel-to-energy conversion line was deter-
mined from the positions of these Kα lines with the well-known energies [14]
and intensity ratios [15] of Kα1 and Kα2.
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existed in the incident beam) on high-purity titanium and nickel
foils placed just behind the target cell. The energy of the kaonic-
helium 3d → 2p x-ray, ∼6.4 keV, lies between the character-
istic x-ray energies, 4.5 keV(Ti) and 7.5 keV(Ni). To obtain
high-statistics energy calibration spectra, we accumulated SDD
self-triggered events together with the stopped-K− triggered
events, which provide high-accuracy in-situ calibration spectra.

To avoid detecting the background characteristic x-rays from
other than the titanium and nickel, high-purity aluminum foils
were placed on all objects in the view of the SDDs.

3. Analysis

Fig. 2 shows the correlation between the z-coordinate of
the reaction vertex and the light output of T0. Each compo-
nent of the target assembly (a carbon degrader, a target cell and
SDDs/foils) is clearly seen. We applied a fiducial volume cut of
−7.0 < z < 9.0 cm on the z coordinate as shown in Fig. 2, and
of

√
x2 + y2 < 11.0 cm on the radius from the target center.

Slower incident kaons, which give larger light output on T0,
stop upstream in the target, while faster kaons (hence smaller
pulse height) stop downstream. Events which follow this trend
were selected as stopped-K− events when lying within the
solid-lined box in Fig. 2.

Stopped-K−-timing events were selected using SDD timing
information to reduce the accidental background. Time resolu-
tion of the SDD after time-walk correction was ∼160 ns (σ ) at
∼83 K, which reflected the drift-time distribution of the elec-
trons in the SDD. Data within ± 2 standard deviations from the
average SDD hit timing were selected.

Fig. 3(a) shows a typical x-ray spectrum for SDD self-
triggered events, which is used for the energy calibration. Char-
acteristic x-ray peaks of titanium and nickel were obtained with
high statistics. Typical yields of titanium Kα peaks are 5 × 102

events per hour for each SDD. Time-dependent gain drift was
corrected about every 20 hours. The energy scale was calibrated
by Kα lines of titanium and nickel with the well-known ener-
gies [10] and intensity ratios [11] of Kα1 and Kα2.

Fig. 2. A typical density plot between the z-coordinate of the reaction vertex
and the light output on T0, used to reject in-flight kaon decay/reaction events.

After applying the event selections described above and cal-
ibrating the energy scale, we obtained x-ray energy spectra for
stopped-K− triggered events shown in Fig. 3. Kaonic-helium
3d → 2p, 4d → 2p and 5d → 2p transitions are clearly ob-
served, while the Ti and Ni x-ray peaks are greatly suppressed.
Fig. 3(b) and (c) respectively show the x-ray spectra taken in
the runs in October 2005 (cycle 1) and December 2005 (cy-

Fig. 3. (a) A typical x-ray spectrum for self-triggered events which provides
high-statistics energy-calibration information. (b), (c) Measured x-ray spectra
for stopped-K− events obtained from the runs in October 2005 (cycle 1) and
December 2005 (cycle 2) respectively. A fit line is also shown for each spec-
trum, along with individual functions of the fit. The fit residuals are shown
under each spectrum, with thin lines denoting the ±2σ values of the data, where
σ is the standard deviation due to the counting statistics.

SDD Self trigger

Kaon trigger, 
fiducial & timing cut

Okada et al., PLB 653 (2007) 387
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were selected as stopped-K− events when lying within the
solid-lined box in Fig. 2.

Stopped-K−-timing events were selected using SDD timing
information to reduce the accidental background. Time resolu-
tion of the SDD after time-walk correction was ∼160 ns (σ ) at
∼83 K, which reflected the drift-time distribution of the elec-
trons in the SDD. Data within ± 2 standard deviations from the
average SDD hit timing were selected.

Fig. 3(a) shows a typical x-ray spectrum for SDD self-
triggered events, which is used for the energy calibration. Char-
acteristic x-ray peaks of titanium and nickel were obtained with
high statistics. Typical yields of titanium Kα peaks are 5 × 102

events per hour for each SDD. Time-dependent gain drift was
corrected about every 20 hours. The energy scale was calibrated
by Kα lines of titanium and nickel with the well-known ener-
gies [10] and intensity ratios [11] of Kα1 and Kα2.

Fig. 2. A typical density plot between the z-coordinate of the reaction vertex
and the light output on T0, used to reject in-flight kaon decay/reaction events.

After applying the event selections described above and cal-
ibrating the energy scale, we obtained x-ray energy spectra for
stopped-K− triggered events shown in Fig. 3. Kaonic-helium
3d → 2p, 4d → 2p and 5d → 2p transitions are clearly ob-
served, while the Ti and Ni x-ray peaks are greatly suppressed.
Fig. 3(b) and (c) respectively show the x-ray spectra taken in
the runs in October 2005 (cycle 1) and December 2005 (cy-

Fig. 3. (a) A typical x-ray spectrum for self-triggered events which provides
high-statistics energy-calibration information. (b), (c) Measured x-ray spectra
for stopped-K− events obtained from the runs in October 2005 (cycle 1) and
December 2005 (cycle 2) respectively. A fit line is also shown for each spec-
trum, along with individual functions of the fit. The fit residuals are shown
under each spectrum, with thin lines denoting the ±2σ values of the data, where
σ is the standard deviation due to the counting statistics.

understading the resolution function (critical!)
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3.3.2 Pileup

We also have waveform data available from flash ADCs (FADCs), which were
accumulated as well as ordinary comparator-type pulse-height ADC data, al-
though the FADC data are available only for about half of first cycle. Using the
waveform analysis, it is found that there is a non-negligible pileup effect due
to the high-rate beam condition of E570. Fig. 10(a) shows a typical waveform
of pre-pileup event, and Fig. 10(b) shows a post-pileup one. In the pre-pileup
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Fig. 10. (a) A typical pre-pileup event measured by a flash ADC. (b) A typical
post-pileup event.

event, the baseline just before rising had a slope due to a remaining previ-
ous pulse’s tail. The overlapped baseline made the pulse height higher than a
non-pileup one. This was because, the x-ray peak had a tail structure on the
higher energy side.

To evaluate the intensity and structure of the pre-pileup events, we separated
them using the relation between averaged baseline height and peak-hold ADC
channel. The top panel of Fig. 11 shows a typical contour plot of the relation of
self-trigger data. Most of the titanium and nickel x-ray events exist below the
solid line, which corresponds to a border line between pileup and non-pileup
events. The bottom panel of Fig. 11 shows typical normalized histograms
of non-pileup and pre-pileup events. The spectral function attributed to the
pileup events could be estimated as a Gaussian on the right flank of the main-
peak function (called the “pileup Gaussian”). The intensity ratio, relative
position and width of the pileup Gaussian were estimated by fitting the two
histograms simultaneously.

3.3.3 Compton scattering in the target

A low-energy tail structure due to incoherent scattering in the target must
be taken into account. If the tail is not added in the fit function, the fitted
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Fig. 11. (a) A typical contour plot of the relation between averaged baseline
height and peak-hold ADC channel of self-trigger data. (b) Typical histograms
of non-pileup and pre-pileup events selected from FADCs waveform data. The
post-pileup events were eliminated already.

peak center will be pulled as much as 10 eV to the low-energy direction, thus
a misleading result for the strong-interaction shift will be caused.

The intensity and structure of the tail were estimated using a Monte Carlo
simulation based on the GEANT code with the Low Energy Compton Scatter-
ing (LECS) package [18] and a measured stopped-K− distribution. Fig. 12(a)
shows a simulated spectrum with considering coherent and incoherent scat-
tering, and Fig. 12(b) shows the spectrum smeared by a Gaussian resolution
function. A function was chosen to express the spectral shape (called the
“Compton tail function”), the convolution of an exponential function with a
Gaussian,

Tail(E) =
F (E)

2βσ
exp

(
E − E0

βσ
+

1

2β2

)

· erfc
(

E − E0√
2σ

+
1√
2β

)

, (2)

where F is the energy-dependent area of this function, E0 is the mean value
of the Gaussian, σ is the sigma of the Gaussian and β is a slope parameter of
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the exponential. All parameters of the Compton tail function relative to the
main peak were estimated by fitting the smeared x-ray energy spectra.
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Fig. 12. (a) A typical simulated spectrum with considering coherent and incoher-
ent scattering in the target. (b) A smeared spectrum with a Gaussian resolution
function.

3.3.4 Low-energy tail and shelf

There are many empirical investigations of the response function of silicon
detectors using monoenergetic x-rays (e.g. [19, 20]), and it is usually known
that there is an exponential-like feature decreasing steeply in intensity towards
lower energy on the left flank of the main-peak function (called the “tail func-
tion”) and a flat shelf-like feature which extends to near zero energy (called the
“shelf function”) [20], due to electron transport processes and imperfections
in the fabrication processes. The equation of this low-energy tail function is
same as that of Compton tail. The shelf function is expressed as the following
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where E(n,d) − E(2,p) and EEM
(n,d) − EEM

(2,p) correspond to the
measured and calculated EM x-ray energies, respectively. To
combine all statistics of the observed Balmer-series lines, we
calculated !E2p for each line using Eq. (2) and took their sta-
tistical averages; the 2p-level shift was then derived as

(3)!E2p = 2 ± 2(stat) ± 2(syst) eV,

where EM values listed in Table 1 [15] were adopted, and the
systematic error was estimated in the way mentioned above.
Note that the EM energy and thus the energy shift are sensitive
to the value of the kaon mass, for which two slightly disagreeing
measurements exist [16] leading to a large error in the PDG
value. If the kaon mass changes by one standard deviation from
the current value of 493.677(16) MeV/c2 [16], !E2p changes
by about 0.2 eV [15].

5. Conclusion

In conclusion, we have measured the Balmer-series x-rays
of kaonic 4He atoms using silicon drift detectors which lead
to a much improved energy resolution and signal-to-noise ratio
compared to the Si(Li) x-ray detectors used in the past experi-
ments. The kaonic 4He x-ray energy of the 3d → 2p transition
was determined to be 6467 ± 3(stat) ± 2(syst) eV.

Using three observed transition lines (3d → 2p, 4d → 2p

and 5d → 2p) with the corresponding EM values [15], the 2p-
level shift was deduced as !E2p = 2 ± 2(stat) ± 2(syst) eV.
Fig. 4 shows a comparison of the 2p-level shifts between this
work and the previous experiments [2–4]. Our result excludes
the earlier claim of a large shift of about −40 eV.

The theoretical calculations of the shift are very close to
zero (∼ −0.1) eV by an analysis with global fits to existing
kaonic-atom x-ray data on various nuclei using an optical po-
tential [1,5], and also by a calculation using an SU(3) chiral
unitary model [6]. A recent calculation by Friedman gives a
value of −0.4 eV as the lowest possible one [7], when the non-
linear density dependence is included [18]. On the other hand,
Akaishi calculated the shift as a function of the real part (U0)

Fig. 4. The 2p-level shift of kaonic 4He, !E2p , obtained from this work and
the past three experiments (WG71 [2], BT79 [3], BR83 [4]). Error bars show
quadratically added statistical and systematic errors. The average of these past
experiments is indicated by the horizontal gray band.

of the K̄N potential depth at a certain coupled potential depth
(Ucoupl = 120 MeV) [19]. The calculation was based on the
coupled-channel approach between the K̄N channel and the
Σπ decay channel. A large shift (|!E2p| ∼ 10 eV) is pre-
dicted near the resonance between atomic and nuclear poles,
when the potential depth is at around ∼200 MeV. The presently
observed small shift disfavors the values of (U0,Ucoupl) =
(∼200 MeV,120 MeV) within his framework.

Our careful and precise determination of the 2p-level shift
resolved the long-standing kaonic helium puzzle. The present
data alone are not sufficient to deduce the K̄-nucleus potential
strength at the center of the nucleus. A unified study with the
2p width to be determined in further analysis and with data to
be collected in kaonic 3He x-ray spectroscopy [20] will indu-
bitably yield invaluable constraints for the theories.
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corresponds to ±1 eV in X-ray energy 
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•Now the 2p shift is consistent with all 
theory calculations

•No more Kaonic Helium puzzle

•Width also appears to be small

•large K-3He shift still a possibility
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