Feb 22, 2006 YITP workshop (HFD06)

Precision spectroscopy of Kaonic Helium $3d \rightarrow 2p$ X-rays

RIKEN, Advanced Meson Science Lab. Shinji Okada for KEK-PS E570 collaboration G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. Iio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

Introduction

Last orbit level shift of Kaonic atom

Last orbit level shift of Kaonic atom is sensitive to **K-nucleus strong interaction**.

Kaonic Helium atom:
 Last orbit = 2p
 3d→2p shift : ?
 → Kaonic Helium Puzzle

The Kaonic Helium Puzzle

Physics motivation

K-nucleus potential information

A possible large repulsive shift !

with "Deep optical pot. + Coupled-channel model"

2p level shifts of the K⁻-⁴He atom

If the measured 2p energy shift were...

2p level shift of kaonic helium4 atom

Experiment

■ Measure the strong-interaction shift of K⁻-⁴He $3d \rightarrow 2p$ X-rays with a precision <u>better than 3 eV</u>

Using X-ray detector "SDD" mounted inside the helium target (same as E471/E549)

Stopped K⁻ reaction on Liq. ⁴He target

Experimental feature

Silicon Drift Detector (SDD) : for high-resolution X-ray energy measurement

Fiducial volume cut : by means of kaon stopping position measurement with

kaon tracking detectors

drift chambers for secondary particles

In-beam energy calibration : using characteristic X-rays from titanium and nickel foils (accurate insitu calibration)

SDD (Silicon Drift Detector)

cathode

Small capacitance

SDD feature

Small capacitance (small anode)
 Good energy resolution
 Thin active layer
 (0.26mm<<4mm in previous exp.)
 Good reduction of main background due to the fake X-ray signals from soft Compton scattering

→ Good S/N

Large effective area (100mm²)

KETEK 100mm² SDD

Typical resolution (with ⁵⁵Fe source)

E570 setup (SDD and L-HeII target)

Kaon beam direction

To avoid background X-rays from other materials (Fe etc.), pure Aluminum foils were installed around the SDDs.

Setup pictures

Experimental condition

- **Experimental period** :
 - October, 2005 (first cycle) ... ~ one month
 - December, 2005 (second cycle) ... ~ two weeks

□ Trigger :

- (stopped K⁻) * (secondary charged particles)
- SDD self trigger
- □ Beam (@KEK-PS K5 beamline):
 - π/K ratio : ~ 200
 - (stopped) Kaon beam : 4k/spill (trigger level)

 \rightarrow total : ~3G stopped K⁻

SDD

- SDD temperature : ~85K
- SDD preamp : water cooling @6~7 degrees C
- Typical SDD hit rate : ~ 1k / spill for each SDD

Preliminary result

Target image and fiducual volume cut

Typical spectrum for self trigger events

For Typical 1 SDD
 All runs (E570 2nd cycle)

PH-ADC (channel)

 \rightarrow Energy calibration (gain adjustment) : for about every 8 hours.

Preliminary spectrum

(Comparison with a past experiment)

-40eV shift is very clearly rejected

Energy calibration \rightarrow Using self trigger events

Summary

- □ Accurately measured K⁻-⁴He 3d→2p X-rays energy spectrum
 - High energy resolution : 185 eV @6.5keV
 - Good S/N ratio : applying fiducial volume cut (~6)
 - Energy calibration was successfully done using characteristic X-rays from Ti and Ni foils
- Cleary rejected -40eV (repulsive) shift reported in the three past experiments.

Comparison with past experiments

	E570 (present)	Past exp.
Resolution (FHWM)	~185eV @6.5keV	~300eV @6.5keV
Effective area	100mm ² * 8 SDDs	300 mm ²
Detector Thickness	0.26mm → Good S/N	~4mm
Energy calibration	In-beam calib. (Ti,Ni)	Not in-beam calib.
Fiducial volume cut	Yes	No