Aug 25, FB18 (Santos)

Precision spectroscopy of Kaonic Helium $3d \rightarrow 2p$ X-rays

RIKEN Shinji Okada for KEK-PS E570 collaboration

KEK-PS E570 collaboration list

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi²,
C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. Iio⁸,
T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹,
M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸,
H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³,
S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸,
E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³

Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

Introduction

Last orbit level shift of Kaonic atom

Last orbit level shift of Kaonic atom is sensitive to **K-nucleus strong interaction**.

precisely determine the \overline{K} -nucleus strong interaction at vanishing relative energy \rightarrow many experiments have been done (from Helium to Uranium)

The Kaonic Helium Puzzle

A possible large repulsive shift !

Setup pictures

SDD (Silicon Drift Detector)

Anode size (capacitance) kept small independent of the detector area.
 Good energy resolution with large effective area (100mm²)
 Small anode -> reduce the thickness (0.26mm<<4mm in previous exp.)
 > reduce continuum background caused by the soft-Compton process.

Typical resolution (with ⁵⁵Fe source)

Preliminary result

Target image and fiducual volume cut

Energy calibration (high-statistics calib. data)

-40eV shift is very clearly rejected

Error estimations

□ Estimated statistical error : ~2 eV

$$\frac{\sigma}{\sqrt{N}} \sim \frac{185/2.355}{\sqrt{1500}} = 2.03$$

(1500 events for $3d \rightarrow 2p x - ray$)

Systematic errors ... Now in progress

- Energy calibration & gain adjustment
- Not sure that pion induced (~500MeV/c) characteristic x-ray energy = ~ photon induced (x-ray data booklet).
- ... At this moment, we are using x-ray data booklet energies as the calibration energies of Ti & Ni's x-rays in our energy calibration.
- ... To be sure this matter, we have already performed a test experiment to measure the pion-induced x-ray spectra with calibration sources. (This experiment has been performed just until one week before at PSI. ...This analysis is now in progress.)
- SDD response function study etc.

Summary

- □ Accurately measured K⁻-⁴He 3d→2p X-ray energy spectrum
 - High energy resolution : 185 eV @6.5keV
 - Good S/N ratio : applying fiducial volume cut (~6)
 - Energy calibration was successfully done by using characteristic X-rays from Ti and Ni foils
- Cleary rejected -40eV (repulsive) shift reported in the three past experiments.

Now we are still analyzing these data including systematic error estimation.