Here we perform the analysis to get slewing correction function for PA/PB with stopped K+ data. The run-by-run tune would be performed in relation with T0/PA/PB analysis in a latter stage.
1. 1st stage PB slewing correction is performed with central PA segment (ID 4 of 1~8 from top to bottom). At this moment, &xi term is not considered, since y(on PB) region is limited, then. Particle identification is performed with PBmeantime - PAmeanttime VS sqrt(phTop*phBottom) on PB.
2. 1st stage PA slewing correction is performed with all 17 PB segments. At this moment, &xi term is taken into account, since z(on PA) region is globaly covered, then. Particle identification is performed with PBmeantime - PAmeanttime - f(sqrt(phTop*phBottom))VS sqrt(phUpstream*phDownstream) on PA.
3. 2nd stage PB slewing correction is performed with all 8 PA segments again. Now, &xi term is taken into account, since y(on PB) region is globaly covered. PID is performed by 1/&beta VS sqrt(phTop*phBottom) on PB, in which 1/&beta is determined with the correction functions obtained at step 1&2.
4. 2nd stage PA slewing correction is performed with all 17 PB segments again. Particle identification is performed with 1/&beta VS sqrt(phUpstream*phDownstream) on PA, in which which 1/&beta is determined with the correction functions obtained at step 2&3.
5. 3rd stage PB slewing correction is performed with all 8 PA segments again. &xi term is considered again. PID is performed by 1/&beta VS sqrt(phTop*phBottom) on PB, in which 1/&beta is determined with the correction functions obtained at step 3&4.
Therefore, we repeat the calculation of the correction function 2/3 times, and on each stage, the most updated correction function is adopted to purify the K+ -> &mu+ &nu decay events from stopped K+. Note that stopped K selection and fiducial volume cut are applied in all the steps.Ci*PP(sqrt{ph_Top*ph_Bottom}*|vx|) = Esim,
where Esim is the Landau peak position of simulated normalized energy loss distribution of monochromatic &mu+ fromK+stopped -> &mu+&nu,
and PP(sqrt{ph_Top*ph_Bottom}*|vx|) is the Landau peak position of the distribution of the measured quantity,sqrt{ph_Top*ph_Bottom}*|vx|,
where vx is PDC-measured direction cos x of &mu+, and ph_Top and ph_Bottom are detected pulse height on the Top and Bottom PMT on the PBsegment. In order to select monochromatic &mu+, stopped K and fiducial volume selections are applied, and &mu events are selected by PAPB-measured 1/&beta within (1.06,1.14). On the simulation, detector geometry/Kaon stopping position distribution/Birk saturation (as 0.013 cm/MeV) are taken into account. After Ci is determined in that way, the effective light output, Ei, is defined asCi*sqrt{ph_Top*ph_Bottom} = Ei,
regardless of the incident particle.PAPBarm | PB ROW/PA ROW | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | total |
---|---|---|---|---|---|---|---|---|---|---|
L | 1 | 1.10124/0.02162 | 1.10367/0.02187 | 1.10188/0.02091 | 1.09952/0.02131 | 1.10006/0.02215 | 1.10050/0.02063 | 1.10212/0.02104 | 1.10317/0.02080 | 1.10134/0.0216102 |
L | 2 | 1.10528/0.02033 | 1.10120/0.01967 | 1.10101/0.02039 | 1.09965/0.02010 | 1.10042/0.02077 | 1.10088/0.02114 | 1.10034/0.02132 | 1.10162/0.02046 | 1.10096/0.0206715 |
L | 3 | 1.10257/0.02178 | 1.10214/0.02004 | 1.10064/0.02001 | 1.09941/0.01937 | 1.09983/0.01990 | 1.10107/0.02100 | 1.10194/0.02051 | 1.10347/0.01985 | 1.10111/0.0203613 |
L | 4 | 1.10356/0.02096 | 1.10275/0.01992 | 1.10080/0.02022 | 1.10011/0.01991 | 1.10014/0.02021 | 1.10086/0.02032 | 1.10176/0.01989 | 1.10323/0.01974 | 1.10137/0.0202388 |
L | 5 | 1.10342/0.02012 | 1.10212/0.01935 | 1.10083/0.02032 | 1.10078/0.01987 | 1.09962/0.02036 | 1.10211/0.01976 | 1.10127/0.02015 | 1.10248/0.01999 | 1.10139/0.0200679 |
L | 6 | 1.10340/0.01863 | 1.10272/0.02036 | 1.10095/0.01990 | 1.09946/0.01928 | 1.10176/0.02153 | 1.10037/0.02022 | 1.10180/0.02028 | 1.10441/0.02081 | 1.10155/0.0202911 |
L | 7 | 1.10363/0.01865 | 1.10192/0.01913 | 1.10134/0.01988 | 1.09976/0.01945 | 1.10008/0.01965 | 1.10089/0.01986 | 1.10148/0.01968 | 1.10325/0.01944 | 1.10126/0.0196154 |
L | 8 | 1.10280/0.01890 | 1.10246/0.01900 | 1.10153/0.01893 | 1.10010/0.01779 | 1.09966/0.01890 | 1.10120/0.01842 | 1.10172/0.01883 | 1.10279/0.01791 | 1.10131/0.0186876 |
L | 9 | 1.10351/0.01986 | 1.10215/0.01897 | 1.10143/0.01872 | 1.09982/0.01893 | 1.09996/0.01887 | 1.10136/0.01962 | 1.10244/0.01939 | 1.10265/0.01871 | 1.10141/0.0191625 |
L | 10 | 1.10348/0.01884 | 1.10303/0.01936 | 1.10139/0.01926 | 1.09961/0.01852 | 1.09994/0.01885 | 1.10170/0.01883 | 1.10147/0.01956 | 1.10395/0.01837 | 1.10149/0.0190379 |
L | 11 | 1.10333/0.02057 | 1.10252/0.01836 | 1.10169/0.01932 | 1.09982/0.01895 | 1.09934/0.01933 | 1.10094/0.01879 | 1.10114/0.02051 | 1.10322/0.01877 | 1.10124/0.0193501 |
L | 12 | 1.10305/0.01967 | 1.10159/0.01918 | 1.10151/0.01953 | 1.10049/0.01932 | 1.10116/0.01931 | 1.10081/0.01917 | 1.10269/0.02039 | 1.10416/0.02040 | 1.10165/0.0196249 |
L | 13 | 1.10295/0.01930 | 1.10243/0.01911 | 1.10210/0.01940 | 1.10072/0.01956 | 1.10034/0.01943 | 1.10070/0.01954 | 1.10212/0.02005 | 1.10339/0.01947 | 1.10155/0.0195956 |
L | 14 | 1.10376/0.01972 | 1.10121/0.01959 | 1.10153/0.02089 | 1.10087/0.01922 | 1.10058/0.02039 | 1.10088/0.01897 | 1.10182/0.02051 | 1.10209/0.02015 | 1.10143/0.0199553 |
L | 15 | 1.10584/0.02229 | 1.10230/0.01993 | 1.10160/0.02112 | 1.10126/0.02042 | 1.10056/0.02133 | 1.10060/0.02165 | 1.10207/0.02022 | 1.10329/0.02085 | 1.1019/0.0210565 |
L | 16 | 1.10532/0.02276 | 1.10355/0.02166 | 1.10127/0.02121 | 1.10134/0.02104 | 1.10122/0.02154 | 1.10102/0.02082 | 1.10241/0.02162 | 1.10259/0.02142 | 1.10202/0.0215639 |
L | 17 | 1.10222/0.01715 | 1.10157/0.01923 | 1.10269/0.02077 | 1.10039/0.01894 | 1.10041/0.01933 | 1.10277/0.01718 | 1.10207/0.01911 | 1.10191/0.01918 | 1.1018/0.0195055 |
L | total | 1.10345/0.0200285 | 1.10232/0.0195962 | 1.10154/0.01999 | 1.10030/0.0193524 | 1.10029/0.0199086 | 1.10111/0.0196622 | 1.10179/0.021765 | 1.10256/0.020029 | - |
R | 1 | 1.10409/0.02276 | 1.10301/0.02018 | 1.10147/0.02201 | 1.09959/0.02035 | 1.09981/0.02153 | 1.09992/0.02239 | 1.10122/0.02232 | 1.10356/0.02268 | 1.10123/0.0218763 |
R | 2 | 1.10254/0.01998 | 1.10091/0.02050 | 1.10015/0.02048 | 1.10063/0.01991 | 1.10022/0.02151 | 1.10011/0.02106 | 1.10105/0.02163 | 1.10244/0.02103 | 1.10078/0.0208956 |
R | 3 | 1.10273/0.02059 | 1.10248/0.02043 | 1.10151/0.02036 | 1.10102/0.01906 | 1.09996/0.01924 | 1.10079/0.02057 | 1.10204/0.02085 | 1.10356/0.02171 | 1.10149/0.0202228 |
R | 4 | 1.10303/0.02022 | 1.10222/0.02032 | 1.10207/0.02147 | 1.09990/0.01983 | 1.10050/0.01993 | 1.10109/0.02049 | 1.10320/0.02168 | 1.10360/0.02231 | 1.10169/0.0208383 |
R | 5 | 1.10401/0.01956 | 1.10237/0.01977 | 1.10078/0.02023 | 1.10062/0.01837 | 1.10000/0.01924 | 1.10026/0.01999 | 1.10212/0.02031 | 1.10419/0.01989 | 1.10137/0.0197039 |
R | 6 | 1.10358/0.01930 | 1.10138/0.01871 | 1.10096/0.02027 | 1.10002/0.01851 | 1.00022/0.02356 | 1.09990/0.01948 | 1.10189/0.01969 | 1.10318/0.02004 | 1.10117/0.0193482 |
R | 7 | 1.10281/0.01979 | 1.10211/0.02049 | 1.10034/0.02112 | 1.10016/0.01948 | 1.09995/0.02029 | 1.10064/0.02075 | 1.10153/0.02118 | 1.10353/0.02121 | 1.10104/0.0205916 |
R | 8 | 1.10421/0.01967 | 1.10197/0.01912 | 1.10139/0.02030 | 1.10004/0.01925 | 1.10026/0.01869 | 1.10093/0.01881 | 1.10122/0.01913 | 1.10318/0.01949 | 1.10132/0.0193519 |
R | 9 | 1.10265/0.02055 | 1.10299/0.01945 | 1.10095/0.02023 | 1.09999/0.01885 | 1.09940/0.02034 | 1.10126/0.02001 | 1.10235/0.02075 | 1.10255/0.01942 | 1.1013/0.0199843 |
R | 10 | 1.10440/0.01897 | 1.10199/0.01845 | 1.10154/0.01955 | 1.10024/0.01799 | 1.09977/0.01918 | 1.10097/0.01835 | 1.10344/0.02003 | 1.10392/0.02011 | 1.10166/0.0190767 |
R | 11 | 1.10434/0.02033 | 1.10175/0.01989 | 1.10147/0.02078 | 1.10014/0.01964 | 1.10035/0.01933 | 1.10135/0.01934 | 1.10251/0.01985 | 1.10286/0.02034 | 1.10153/0.0199526 |
R | 12 | 1.10259/0.01977 | 1.10299/0.01978 | 1.10067/0.01937 | 1.10069/0.01819 | 1.10022/0.01863 | 1.10029/0.01874 | 1.10173/0.01954 | 1.10372/0.01875 | 1.10133/0.019144 |
R | 13 | 1.10390/0.02192 | 1.10344/0.01987 | 1.10042/0.02131 | 1.10071/0.01932 | 1.10055/0.02149 | 1.10151/0.02205 | 1.10281/0.02247 | 1.10527/0.02360 | 1.10199/0.0214199 |
R | 14 | 1.10385/0.02187 | 1.10321/0.01980 | 1.10148/0.02167 | 1.10104/0.02073 | 1.10110/0.02095 | 1.10085/0.02218 | 1.10271/0.02197 | 1.10421/0.02298 | 1.10194/0.0214652 |
R | 15 | 1.10378/0.02246 | 1.10247/0.02132 | 1.10218/0.02244 | 1.10045/0.02038 | 1.10088/0.02057 | 1.10091/0.02085 | 1.10336/0.02094 | 1.10336/0.02199 | 1.10189/0.0213542 |
R | 16 | 1.10457/0.02392 | 1.10216/0.02120 | 1.10278/0.02225 | 1.10066/0.01988 | 1.10154/0.02148 | 1.10331/0.02142 | 1.10110/0.02203 | 1.10418/0.02362 | 1.10208/0.0218697 |
R | 17 | 1.10305/0.01786 | 1.10338/0.02168 | 1.10080/0.02247 | 1.10045/0.02055 | 1.10016/0.02047 | 1.10277/0.02119 | 1.10315/0.02365 | 1.10406/0.02546 | 1.10195/0.0218972 |
R | total | 1.10319/0.0205565 | 1.10198/0.0200308 | 1.10091/0.0207679 | 1.10023/0.0192984 | 1.10006/0.0198624 | 1.10058/0.0202715 | 1.10177/0.0210825 | 1.10287/0.0212425 | - |
PAPBarm | PB ROW/PA ROW | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | total |
---|---|---|---|---|---|---|---|---|---|---|
L | 1 | 1.10238/0.02098 | 1.10150/0.02095 | 1.10016/0.02095 | 1.10059/0.02123 | 1.09961/0.02152 | 1.09978/0.02040 | 1.10157/0.02074 | 1.10276/0.02143 | 1.10081/0.021254 |
L | 2 | 1.10154/0.01891 | 1.10074/0.01935 | 1.10057/0.01958 | 1.10033/0.02021 | 1.09937/0.01960 | 1.10056/0.02045 | 1.10233/0.02013 | 1.10352/0.02058 | 1.10091/0.0199769 |
L | 3 | 1.10174/0.01997 | 1.10060/0.02015 | 1.10085/0.02031 | 1.10007/0.02038 | 1.09952/0.02053 | 1.10043/0.02044 | 1.10203/0.01882 | 1.10336/0.02116 | 1.10080/0.0203951 |
L | 4 | 1.10256/0.02147 | 1.10157/0.02062 | 1.10015/0.02047 | 1.10020/0.01962 | 1.09981/0.01975 | 1.10069/0.01927 | 1.10216/0.01937 | 1.10265/0.01985 | 1.10100/0.0200234 |
L | 5 | 1.10307/0.02017 | 1.10149/0.01971 | 1.10104/0.01984 | 1.09968/0.01941 | 1.09949/0.01949 | 1.10162/0.01937 | 1.10187/0.02003 | 1.10324/0.01943 | 1.10117/0.019738 |
L | 6 | 1.10394/0.01984 | 1.10038/0.01932 | 1.10079/0.01939 | 1.09996/0.01908 | 1.10129/0.01982 | 1.10063/0.01957 | 1.10060/0.01878 | 1.10270/0.01952 | 1.10102/0.0194763 |
L | 7 | 1.10213/0.01870 | 1.10197/0.01887 | 1.10041/0.02004 | 1.09983/0.01891 | 1.10002/0.01899 | 1.10116/0.01910 | 1.10235/0.01961 | 1.10440/0.02001 | 1.10127/0.0193881 |
L | 8 | 1.10340/0.01866 | 1.10166/0.01809 | 1.10131/0.01869 | 1.09954/0.01739 | 1.09997/0.01806 | 1.10088/0.01828 | 1.10190/0.01771 | 1.10363/0.01928 | 1.10124/0.0182557 |
L | 9 | 1.10343/0.01881 | 1.10185/0.01829 | 1.10063/0.01863 | 1.10038/0.01868 | 1.09883/0.01885 | 1.10155/0.01863 | 1.10243/0.01898 | 1.10333/0.01784 | 1.10127/0.0187329 |
L | 10 | 1.10258/0.01895 | 1.10171/0.01837 | 1.10077/0.01859 | 1.10023/0.01922 | 1.09910/0.01884 | 1.10124/0.01885 | 1.10247/0.01848 | 1.10426/0.01895 | 1.10125/0.0188673 |
L | 11 | 1.10439/0.01984 | 1.10233/0.01892 | 1.10070/0.02049 | 1.10030/0.01852 | 1.10016/0.01897 | 1.10115/0.01919 | 1.10154/0.01937 | 1.10344/0.01955 | 1.10146/0.0194006 |
L | 12 | 1.10148/0.01978 | 1.10209/0.02014 | 1.09965/0.02048 | 1.09986/0.02013 | 1.10013/0.01959 | 1.10003/0.02002 | 1.10140/0.01963 | 1.10367/0.01991 | 1.10081/0.0200606 |
L | 13 | 1.10349/0.01919 | 1.10224/0.01840 | 1.10170/0.01966 | 1.10038/0.01846 | 1.10018/0.01900 | 1.10154/0.01893 | 1.10193/0.02006 | 1.10314/0.01914 | 1.10158/0.0192103 |
L | 14 | 1.10399/0.02063 | 1.10128/0.01939 | 1.10087/0.02026 | 1.10094/0.01879 | 1.10080/0.01941 | 1.10135/0.01854 | 1.10113/0.02015 | 1.10413/0.01951 | 1.10153/0.019565 |
L | 15 | 1.10335/0.02147 | 1.10193/0.02071 | 1.10025/0.02158 | 1.10079/0.02046 | 1.09933/0.01963 | 1.10071/0.02045 | 1.10324/0.02241 | 1.10365/0.02226 | 1.10129/0.0210942 |
L | 16 | 1.10249/0.02155 | 1.10100/0.02096 | 1.10193/0.02126 | 1.10088/0.02236 | 1.10053/0.02159 | 1.10096/0.02071 | 1.10094/0.02028 | 1.10222/0.02149 | 1.10134/0.0213227 |
L | 17 | 1.10488/0.01880 | 1.10185/0.01956 | 1.10102/0.02003 | 1.10061/0.01878 | 1.10036/0.01823 | 1.10025/0.01886 | 1.10209/0.01834 | 1.10290/0.02038 | 1.10146/0.0192756 |
L | total | 1.10297/0.0196608 | 1.10164/0.0193564 | 1.10085/0.0198146 | 1.10035/0.01921 | 1.09988/0.0193088 | 1.10105/0.0192789 | 1.10207/0.0195634 | 1.10334/0.0198761 | - |
R | 1 | 1.10193/0.02042 | 1.09951/0.01922 | 1.10009/0.02063 | 1.10049/0.01951 | 1.09965/0.01912 | 1.09954/0.02012 | 1.10035/0.01911 | 1.10286/0.02198 | 1.10146/0.0199877 |
R | 2 | 1.10207/0.01981 | 1.10262/0.02036 | 1.10126/0.02088 | 1.09931/0.01813 | 1.09875/0.01829 | 1.09959/0.02072 | 1.10140/0.01915 | 1.10161/0.02100 | 1.10047/0.0199219 |
R | 3 | 1.10260/0.01922 | 1.10208/0.01927 | 1.10089/0.01956 | 1.09887/0.01841 | 1.09990/0.01878 | 1.10019/0.01941 | 1.10120/0.01867 | 1.10317/0.01937 | 1.10076/0.0191535 |
R | 4 | 1.10342/0.01986 | 1.10184/0.01867 | 1.10103/0.01987 | 1.09967/0.01827 | 1.10004/0.01880 | 1.10061/0.01951 | 1.10193/0.01809 | 1.10350/0.01945 | 1.10117/0.0191919 |
R | 5 | 1.10311/0.02070 | 1.10345/0.01909 | 1.10087/0.01962 | 1.09953/0.01902 | 1.10009/0.01894 | 1.10003/0.01945 | 1.10255/0.01949 | 1.10337/0.01938 | 1.10128/0.0194905 |
R | 6 | 1.10263/0.01830 | 1.10251/0.01892 | 1.10156/0.01953 | 1.09954/0.01875 | 1.09978/0.01782 | 1.10058/0.01863 | 1.10162/0.01876 | 1.10244/0.01828 | 1.10112/0.0187286 |
R | 7 | 1.10323/0.01864 | 1.10221/0.01846 | 1.10106/0.01925 | 1.09959/0.01764 | 1.10005/0.01821 | 1.10075/0.01881 | 1.10110/0.01919 | 1.10246/0.01812 | 1.10106/0.0186509 |
R | 8 | 1.10298/0.01962 | 1.10216/0.01874 | 1.10086/0.02007 | 1.10034/0.01913 | 1.10001/0.01890 | 1.10074/0.01870 | 1.10217/0.01803 | 1.10313/0.01858 | 1.10127/0.0191196 |
R | 9 | 1.10287/0.01918 | 1.10245/0.01891 | 1.10164/0.02089 | 1.10013/0.01847 | 1.10011/0.01872 | 1.10097/0.01915 | 1.10264/0.01906 | 1.10309/0.01805 | 1.10145/0.0192038 |
R | 10 | 1.10204/0.01915 | 1.10251/0.01808 | 1.10146/0.01911 | 1.10016/0.01808 | 1.10023/0.01777 | 1.10028/0.01792 | 1.10183/0.01870 | 1.10445/0.01684 | 1.10134/0.0183123 |
R | 11 | 1.10357/0.01971 | 1.10278/0.01851 | 1.10109/0.01948 | 1.09984/0.01794 | 1.10004/0.01830 | 1.10131/0.01838 | 1.10255/0.01884 | 1.10315/0.01842 | 1.10149/0.0187191 |
R | 12 | 1.10309/0.01907 | 1.10255/0.01905 | 1.10121/0.02025 | 1.09974/0.01917 | 1.09987/0.01769 | 1.10028/0.01812 | 1.10230/0.01891 | 1.10323/0.01777 | 1.10124/0.0188896 |
R | 13 | 1.10323/0.01973 | 1.10274/0.01904 | 1.10136/0.02014 | 1.10015/0.01904 | 1.10083/0.01905 | 1.10142/0.01987 | 1.10223/0.02047 | 1.10466/0.01952 | 1.10175/0.0196549 |
R | 14 | 1.10228/0.01980 | 1.10289/0.01891 | 1.10232/0.02006 | 1.10007/0.01826 | 1.10031/0.01850 | 1.10146/0.02007 | 1.10321/0.01990 | 1.10382/0.01925 | 1.10182/0.0193974 |
R | 15 | 1.10359/0.02740 | 1.10434/0.02547 | 1.10233/0.02966 | 1.10191/0.02741 | 1.10164/0.02792 | 1.10176/0.02832 | 1.10370/0.03048 | 1.10384/0.02731 | 1.10258/0.0284137 |
R | 16 | 1.10378/0.02159 | 1.10317/0.01759 | 1.10145/0.02058 | 1.10088/0.01887 | 1.10176/0.02031 | 1.10315/0.02014 | 1.10161/0.02138 | 1.10529/0.02034 | 1.10227/0.0202575 |
R | 17 | 1.10263/0.02175 | 1.10195/0.01819 | 1.10138/0.02031 | 1.10129/0.01931 | 1.10034/0.01879 | 1.10263/0.01910 | 1.10269/0.01976 | 1.10383/0.01974 | 1.10189/0.019577 |
R | total | 1.10262/0.0199529 | 1.1021/0.0194358 | 1.10102/0.0203535 | 1.09977/0.018978 | 1.09984/0.0189011 | 1.10042/0.019571 | 1.10153/0.019813 | 1.10254/0.019515 | - |