2006年11月24日(金) J-PARC FIFC @ KEK

J-PARC 実験申請課題技術評価委員会

J-PARC EI7 実験

"Precision spectroscopy of Kaonic Helium 3 3d->2p X-rays"

J-PARC EI7 collaboration

KEK-PS E570実験において確立されている

2. ビームライン

KI.8BR ビームライン

ビーム中心運動量の選択

(TURTLE + Sanford-Wang)

750MeV/c付近を用いる

(E570で用いた650MeV/c入射からのK収量と大きな差はない)

πの絶対強度~0.25 x 10⁶必要

Kビームに混在するMIPS粒子 π がTi・Ni
 箔を通過する際に生成する特性X線
 ➡良いエネルギー指標

 \bigcirc コントロールされた _{π 混入が必要}

π⁻の絶対強度は、~0.25 x 10⁶ 必要

K/π比~0.75程度が望ましい (K強度190k/spillを仮定)

TURTLEでは"クラウドπ"の見積もりは出来ない この比はセパレーター電圧等で調整可能

3. 実験装置

セットアップ概略図

トリガーロジック:(K_{STOP} ⊗ CDH ⊗ SDD) ⊕ (SDD_{self trig}.)

期待されるトリガーレートは、 • Kstop⊗CDH⊗SDD = 数/spill

E570実験でのデータに基づき

 $(K_{\text{STOP}} = \overline{\text{LC}} \otimes \text{TI} \otimes \text{TO} \otimes \overline{K_{\text{DECAY}}} \vee \overline{\text{ETO}} \otimes \overline{\text{BEAMVETO}})$

● SDD_{self trig.}=数百/spill

静止Kのための検出器群

必要なカーボン減速材の厚さ:約38/48/58 cm (入射ビーム運動量 650/700/750 MeV/cに対して)

(カーボン減速材 総重量:~10 kg)

ビームラインカウンター

• LC:ルサイトチェレンコフカウンター (2台)

π/Κ分離のため

• TI:シンチレーションカウンター(I台、片読み)

トリガーにおけるビーム決定のため (defining counter)

• T0:シンチレーションカウンター (3台、両読み)…減速材の直後に設置

減速されたK⁻のエネルギー損失 ⇒ in-flight K⁻ 事象との選別

ビームラインチェンバー

CDC及びマグネットエンドキャップの穴:300 mmΦ 円筒型荷電粒子VETOカウンタとCDSケーブル引き出し用スペース:200~300 mmΦ

➡ 250 mm⊕以内に収める

● 2.5 mm ピッチ

- I6センスワイヤー/I面
- 有効面:8角形...86 x 86 [cm²]
- 8面(XX'YY' XX'YY')

➡ 230 mm Φ に十分収まる

X線検出器 (SDD)

KETEK SDD プロトタイプ (100mm²): E570で使用

(現在12台所有)

セラミック (SDDサポートの熱収縮等 により、破壊されやすい)

ビームを用いたエネルギー較正

プリアンプを真空容器内部へ

プリアンプを真空容器内部へ

プリアンプを真空容器内部へ

4. データ収集系 (DAQシステム)

DAQシステム

EI5実験のシステムに対して必要なチャンネルを追加した形で構成 COPPERシステム+TKOシステム

◎ X線検出器:COPPERシステム

✓ ピークホールドADC:ウィルキンソン型及び逐次近似型ADC

✓ フラッシュADC:パイルアップ事象の棄却

✓ TDC: フルレンジ数µ程度TDC

(⇒ E570で用いたTKO/VMEシステムのものは既存)

◎ ビームラインチェンバー:COPPERシステム

EI5における最下流チェンバーと同じ読み出しシステム

● <u>ビームラインカウンタ群:TKOシステム</u>

既存のTKOシステムを使用

チャンネル数

		システム	チャンネル	実験
CDC システム	TDC	ТКО	1842 ch	
CDH システム	ADC	ТКО	100 ch	EI5 / EI7
	TDC	ТКО	100 ch	
ビームライン チェンバー	TDC	COPPER	I 28 ch	
ビームライン カウンター	ADC	ТКО	I0 ch	
	TDC	ТКО	I0 ch	
SDD	PH-ADC	COPPER (/TKO)	I6 ch	
	FADC	COPPER (/VME)	I6 ch	
	TDC	COPPER (/TKO)	8 ch	
Total			2230 ch	

5. 予算状況

現状

- EI5と共通セットアップに関して:
 特定領域研究計画「マルチストレンジネス多体系の分光」
 ⇒「K中間子が拓く超高密度クォーク物質の研究」
- EI7に特化した予算について: 申請中

(EI5共有部分を除いた) 実験装置概算見積

品目	概算金額 (千円)
×線検出システム	9,700
標的システム	3,000
ビームライン飛跡検出器システム	4,700
DAQシステム	6,000
データサーバー	3,600
計	27,000

6. 装置開発プラン

EI5との関連

- 必要となる実験装置でも共通する部分が多い
- 多くの実験協力者がオーバーラップ

	本実験 E17	E15		
反応	静止 K-	In-flight K ⁻		
二次ビームライン	K1.8BR			
二次ビーム運動量	$0.75~{\rm GeV/c~K^-}$	$1.0 \ {\rm GeV/c} \ {\rm K}^-$		
入射ビーム検出	(静止K)ビームライン検出器群	ビームラインスペクトロメーター		
標的	(液体ヘリウム 3 (~500 cm ³))			
崩壊荷電粒子検出	円筒型検出器システム (CDS)			
磁場	無し	有り (ソレノイド電磁石)		
X線検出	シリコンドリフト検出器 (SDD)	-		
(前方)中性子検出	_	中性子カウンター		

効率的な実験実施の為、共通する部分を共同開発する

タイムスケジュール

コラボレーションリスト

世界の9つの大学・研究機関から38名の研究者によって構成

G. Beer^a, H. Bhang^b, P. Buehler^c, M. Cargnelli^c, 千葉順成^d, S. Choi^b, C. Curceanu^e, 福田芳之^f, C. Guaraldo^e, 花木俊生^d, 早野龍五^{g,4}, A. Hirtl^c, 飯尾雅実^h, M. Iliescu^e, 石川隆^g, 石元茂ⁱ, 石渡智一^c, 板橋健太^h, 岩崎雅彦^{f,h}, P. Kienle^c, J. Marton^c, 松田 恭幸^h, 大西宏明^h, 岡田信二^{h,5}, 應田治彦^{h,6}, D. Pietreanu^e, 佐久間史典^h, 佐藤将春^f, D. Sirghi^e, F. Sirghi^e, 鈴木祥仁ⁱ, 鈴木隆敏^h, 竜野秀行^g, 友野大^h, E. Widmann^c, 山崎敏 光^{g,h}, H. Yim^b, J. Zmeskal^c

^a ヴィクトリア大学 (カナダ)

^bソウル大学(韓国)

^cステファンマイヤー研究所 (オーストリア)

^d東京理科大学

 e LNF-INFN (イタリア)

^f東京工業大学

⁹東京大学

^h 理化学研究所

ⁱ高エネルギー加速器研究機構

参加機関別責任分担

X 線検出器:理化学研究所 - 東京大学 - ステファンマイヤー研究所 - LNF-INFN 円筒型検出器システム (CDS): E15 実験 FIFC 資料 (実験組織の章) を参照 ヘリウム3標的:理化学研究所 - 高エネルギー加速器研究機構 (静止 K のための) 入射ビーム検出器群:理化学研究所 データ収集系:理化学研究所

DAY-I 実験としての適性

ビームタイムの見積もり(E570と同等(~2eV(stat.))の統計を得るには...)

	K1.8BR の場合
プロダクション (最大強度: 30GeV-9µA)	3.5日
コミッショニング	10 日

(検出器に対する コミッショニング)

ビーム強度が一桁弱い場合においても、一ヶ月程度(35日)でデータ収集が可能

➡ "DAY-I"実験として申請

➡ EI5実験より前に同ビームラインで行うことを提案

但し、

全く新規の最初のビームラインチューニングとなる場合、

ビームライン調整期間は別途必要である

- •入射ビーム中心運動量の測定
- •エミッタンスの測定
- K/pi 比の最適化