2007年11月28日(水) 特定領域研究会2007@秋保

J-PARCにおける K中間子へリウム3原子X線分光実験の現状

理研 岡田 信二 for J-PARC E17 collaboration

J-PARC E17 Collaboration

G.Beer^a, H.Bhang^b, P.Buehler^c, M.Cargnelli^c, 千葉順成^d, S.Choi^b, C.Curceanu^e, 藤原裕也^f, 福田芳之^f, C.Guaraldo^e, 花木俊生^d, 早野龍五^g, A.Hirtl^c, 飯尾雅実^h, M.Iliescu^e, 石川隆^g, 石元茂ⁱ, 石渡智一^c, 板橋健太^h, 岩崎雅彦^{f,h}, P.Kienle^c, J.Marton^c, 松田恭幸^h, 大西宏明^h, 岡田信二^h, 應田治彦^h, D.Pietreanu^e, 佐久間史典^h, 佐藤将春^f, D.Sirghi^e, F.Sirghi^e, 鈴木祥仁ⁱ, 鈴木隆敏^h, 竜野秀行^g, 友野大^h, E.Widmann^c, 山崎敏光^{g,h}, H.Yim^b, J.Zmeskal^c

a ヴィクトリア大学(カナダ)
 b ソウル大学(韓国)
 c ステファンマイヤー研究所 (オーストリア)
 b 理化学研究所
 i 高エネルギー加速器研究機構
 c LNF-INFN (イタリア)
 f 東京 理科大学

何を測定するか

K中間子ヘリウム3原子X線エネルギー

K中間子ヘリウム原子

強い相互作用による エネルギーシフトと幅を測定

赤石氏による Coupled Channel 計算

$\pi^{-} + {}_{\Sigma}^{4} \operatorname{He}(\mathrm{H}) \land \mathcal{O} \operatorname{\mathcal{I}} \mathcal{V} \mathcal{I}$

Diagonal term : $U_D(r) = -U_0 F(r)$ Coupling term : $U_C(r) = -U_{coupl} F(r)$

 $\begin{cases} -(\hbar c)^2 \nabla^2 + 2\mu c^2 (V_c + U_D - \epsilon) - (V_C - \epsilon)^2 \} \Psi + 2\mu c^2 U_C \Phi = 0 \\ \{ -(\hbar c)^2 \nabla^2 + 2\mu' c^2 (Q - \epsilon) - (Q - \epsilon)^2 \} \Phi + 2\mu' c^2 U_C \Psi = 0 \\ Q = M_{\frac{4}{\Sigma}He} c^2 + m_{\pi^-} c^2 - M_{4He} c^2 - m_{K^-} c^2 \end{cases}$

Y. Akaishi, EXA05

➡ K-³He 及び K-⁴He 2pレベルのシフトと幅を計算

Nuclear pole が Atomic pole に近づくと 原子レベルに振れを与える

2pレベルに巨大シフトの可能性 (upward巨大シフト--> p波K核の存在)

シフトの最大値 (Ucouplの関数として)

K-4He X線測定 @ KEK

Augitable option of your coloneadirect com

EVIER

KEK-PS E570 実験 → Published

Phys. Lett. B 653 (2007) 387

www.elsevier.com/locate/physletb

TTERS B

Available online 17 August 2007

Editor: V. Metag

KEK-PS E570 実験 → Published TTERS B EVIER Phys. Lett. B 653 (2007) 387 20 2p 準位シフト *AE2p* [eV] $\Delta E_{2p} = 2 \pm 2(\text{stat}) \pm 2(\text{syst})$ nic⁴He Precisio S. Okada a. urceanu ', 0 shiwatari^d, Y. Fukuda E570 K. Itahash fatsuda ª, H. Ohnishi a, H D. Tomono^a, -20 -40 過去3実験 の平均 **BT79** -60 **BR83** WG71

-80

赤石計算との比較

Y.Akaishi, EXA05

赤石計算との比較

Y.Akaishi, EXA05

アイソスピン依存性 K-4He と K-3He

K-He間の強相互作用ポテンシャル実部

◇ KN int. I=Oが引力

 -> K³Heが1.5倍強
 ◇ ³Heの核子密度低い効果・
 reduced mass小さい効果
 -> K⁴Heが1.5倍強

→ 打ち消される

Uo: K-4He, K-3Heでほぼ同じ!

E15とは異なった角度からの K中間子深束縛状態の存在/性質の究明

赤石・山崎の計算:K中間子の深い束縛状態を予言 K-^{3,4}He間の(強い相互作用の)ポテンシャル実部

Y. Akaishi: EXA05

赤石計算:アイソスピン依存性

Y.Akaishi, EXA05

赤石計算:アイソスピン依存性

Y.Akaishi, EXA05

K-3He X線測定 @ J-PARC

J-PARC E17:目的

K中間子ヘリウム3原子の最終軌道(2p)のシフトを ~2eVの精度で決定すること

● K-4Heの結果(E570)及び理論(赤石計算)との比較:
▶ K-ヘリウム間のポテンシャルの深さ

▶ K中間子原子核の存在

シンプルな系における、K中間子-原子核間の強い相互作用のアイソスカラー/ベクター部に関する新たな知見

K1.8BR ビームライン

E17セットアップ概略

トリガーロジック: (Kstop ⊗ CDH ⊗ SDD) ⊕ (SDDself trig.)

($K_{STOP} = \overline{LC} \otimes T1 \otimes T0 \otimes \overline{K}_{DECAY}VETO \otimes \overline{BEAMVETO}$)

E570実験でのデータに基づき 期待されるトリガーレートは、

- ・Kstop⊗CDH⊗SDD = 数/spill
- ・SDD_{self_trig.} = 数百/spill

磁場印加について

本実験E17の観点からは、CDS磁場印加は必ずしも必須でない。

利点 (静止K実験において)

for E17 ▶ 磁場収束効果による収量増加 : ³He標的体積は、前実験(E570)の1/10 と小さい為、減速材から出てきた広がったKビームを効果的に静止?

→ 入射K螺旋軌道をトラック。(曲げ半径から運動量測定も可?)

(for E15) ▶ CDSの運動量解析の較正:静止K反応からのモノクロµを使用)

for others) ▶ 今後 CDSを磁場印加して用いる多くの実験においても有用

R & D

- ▶ SDDの磁場中動作
- ▶ 入射粒子識別用カウンタ群の磁場動作 (シンチ・ルサイト)
- ▶ 入射Kの(螺旋)飛跡検出チェンバーの開発

小型ビームラインチェンバー

CDC及びマグネットエンドキャップの穴:300 mmΦ 円筒型VETOカウンタとCDSケーブル引出用スペース:250~300 mmΦ ➡ 250 mmΦ以内に収める

-> 制作中

with GARFIELD

Minimum drift time : 200 [ns/cm] for 0 T 210 [ns/cm] for 0.7 T

Difference of the drift time for 0 and 0.7 Tesla was ONLY ~5 %.

プリアンプを真空容器内部へ

低ノイズ

✓ 微弱なシグナルの引き回し距離が減る
 (~50 cm (E570) → ~数 cm (E17))
 ⇒ 低ノイズ ⇒ 安定した良い分解能

ポートからの熱流入減 ✓ SDDシグナルの取出口を標的から遠ざ けることが可能 ⇒ 標的への熱流入減

プリアンプを真空容器内部へ

低ノイズ

✓ 微弱なシグナルの引き回し距離が減る
 (~50 cm (E570) → ~数 cm (E17))
 ⇒ 低ノイズ ⇒ 安定した良い分解能

ポートからの熱流入減 ✓ SDDシグナルの取出口を標的から遠ざ けることが可能 ⇒ 標的への熱流入減

 所有のプリアンプでは、低温(~80K)に
 おいて、安定した動作が見込まれない。
 低温で安定する素子を用いた、プリアン
 プの制作を考案中
 サムウェイ社 低温用プリアンプ(?)

ビームタイム見積もり

ビームタイムの見積もり

E570 statistics : 3d->2p 1500events for ~20 days (w/ 8 SDDs)

- \rightarrow K-yield : x 2
- \rightarrow SDD acceptance : x 3
- \Rightarrow 3.5 days (w/ 8 SDDs)

~2eV(E570と同等)の統計を得るには...

※検出器に対するコミッショニング 新規ビームラインの調整期間は別途必要

ビーム強度が一桁弱い場合においても、 ーヶ月程度(35日)でデータ収集が可能

➡ "DAY-1"実験

➡ E15実験より前に同ビームラインで行うことを提案

これまでの流れ

プロポーザル提出 -> stage2

● 2006年 4月: プロポーザル提出

P17 "Precision spectroscopy of kaonic ³He 3d->2p X-rays"

- 2006年 6月:1st PAC meeting
- 2006年 8月:Stage-1 approval: P17 --> E17
- 2006年11月:FIFC meeting (実験技術評価委員会)
- 2007年 3月: Stage-2 approval

DAY-1に向けての準備

Things to do

大西氏/佐久間氏 E15と共有部分の開発 (CDC等) → 制作中 により報告(昨日) 飯尾氏により ヘリウム3標的システムの開発 → 制作中 報告(昨日) 小型ビームラインチェンバー制作 → 設計終了 · 制作中 ビームライン検出器群 及び 架台の制作 → 未制作 (来年春以降) X線検出器系の改良 → プリアンプ制作? プリアンプの真空・低温環境下の動作 → 来年夏以降 新しいタイプのSDDのテスト

アレー型のKETEK社製SDDは 問題が発生し発売を来年夏以降 に延期されている。

まとめ

- E17実験:「K-³He原子の最終軌道(2p)のシフトを~2eVの精度で決定」
 - ▶ E15とは異なった角度からのK中間子深束縛状態の存在/性質の究明
 - ▶ (K-原子核間 強相互作用のアイソスカラー/ベクターの新たな知見)
- 現在、DAY-1に向けて準備している
 - E15実験の共有部分の開発
 - ヘリウム3標的システムの開発
 - ビームライン検出器群設計
 - X線検出器系の改良