MPGD6@山形大学10/11/26・27

# J-PARC E15実験におけるTPCの ためのTGEM開発2010

徳田真(東工大) 佐久間史典(理研) 岩崎雅彦(理研)

## Contents

- Introduction
- 前回までのながれ
- Carbon TGEM study
- ・長時間安定動作について
- ・ 9角形TGEMの現状
- まとめとこれから

## Introduction

- J-PARC E15実験のためにTGEM-TPCを開発中
- ・E15実験はK中間子原子核(K-pp)を探索する実験である
- 円筒型飛跡検出器群CDSによってK-ppのInvariant massを同定する
- TGEM-TPCはCDSの中心付近に設置するため非常にコンパクトな 検出器になる







9角形TGEMを動かすため、 10cm x 10cmのTGEMの特性を調べている

# 10cm x 10cm TGEMの測定

### 大きさ<mark>10cm×10cm</mark>のTGEM作製 TGEMテスト実験

- 増幅度測定:10<sup>4</sup>以上で動作するか?
- ・長期間動作測定:安定かどうか?





# TGEMの種類

#### 開発しているTGEM(林栄精器(株)に設計、東海電子(株)で作成)

| No. | Electrode | Thickness[µm] | Hole-diameter[µm] | Rim[µm] |                     |
|-----|-----------|---------------|-------------------|---------|---------------------|
| 1   | Cu        | 200           | 300               | 50      | × 2                 |
| 2   |           | 200           | 500               | -       | × 2                 |
| 3   |           | 400           | 300               | -       | × 5                 |
| 4   |           | 400           | 500               | -       | × 2                 |
| 5   | Cu        | 400           | 300               | 30      | × 2                 |
| 6   |           |               |                   | 50      | × 2                 |
| 7   |           |               |                   | 100     | × 2                 |
| 8   | С         | 400           | 300               | -       | ×17 <mark>+6</mark> |
| 9   | С         | 600           | 300               | -       | × 2                 |
| 10  | C/Cu      | 400           | 300               | -       | × 4                 |
|     |           | 木             | 亟板の大きさは全て10c      | m×10cm  | 計44枚                |

# TGEMの種類



### 放電防止の加工



# 前回のまとめ

- 厚さと孔径
  - 厚さ:孔径=200:300,200:500,400:300,400:500を作成
     厚さ:400µm、孔径:300µmの最大gainが最も高い
- Cu-TGEMのRimの効果
  - 利点:gainが大きくなる
  - ・欠点:Rimが大きいほどgainが不安定である
     ->Rimはなるべく小さく作る
- Carbon-TGEMとその問題
  - 最大gainは必要な増幅度に達している
  - ・製作課程に置ける再現性なし(2勝9敗)->今回はこの続き
- Hybrid-TGEMの作成
  - Hybridは安定して十分なgain
  - ・製作課程に置ける再現性あり

# 前回のまとめ



#### 放電防止の加工



# 主なTGEMの増幅度



- ・高抵抗なCarbonを極板に用いることで放電防 止する。
- 1つ目がたまたま良く動いたが、作製工程に 置ける再現性が無いことが分かった。
- ・ 孔内にカーボンが付着することにより放電の
   パスを形成するのが原因と考えられる。
- 改善策として
  - Insulatorを変更したTGEMを作成
  - レイテック(株)のポリミドエッチングを行った

#### 理研で開発しているTGEM(Carbon)

| Electrode | Insulator   | Thickness[µm] | Hole-diameter[µm] | Max gain                 |    |
|-----------|-------------|---------------|-------------------|--------------------------|----|
| С         | FR4         | 400           | 300               | over $2 \times 10^4$     | x4 |
| С         | FR4/UV      | 400           | 300               | _                        | x7 |
| С         | G10         | 400           | 300               | <b>~</b> 10 <sup>3</sup> | x4 |
| С         | Glass paper | 400           | 300               | over $2 \times 10^4$     | x8 |

インシュレーターの違い Glass paper

FR4





Glass paperの場合: 孔内に付着したCarbonを ポリミドエッチング(レイテック(株))によって除去できる

#### 理研で開発しているTGEM(Carbon)

| Electrode | Insulator   | Thickness[µm] | Hole-diameter[µm] | Max gain                 |    |
|-----------|-------------|---------------|-------------------|--------------------------|----|
| С         | FR4         | 400           | 300               | over $2 \times 10^4$     | x4 |
| С         | FR4/UV      | 400           | 300               | -                        | x7 |
| С         | G10         | 400           | 300               | <b>~</b> 10 <sup>3</sup> | x4 |
| С         | Glass paper | 400           | 300               | over $2 \times 10^4$     | x8 |

インシュレーターの違い

FR4





Glass paperの場合: 孔内に付着したCarbonを ポリミドエッチング(レイテック(株))によって除去できる

## Carbon TGEM gain

#### Glass paperインシュレーターでポリミドエッチングした Carbon TGEMは必要な増幅度を達成



## Carbon TGEM gain

### 他のTGEMと比較するとこのようになる



### **Triple Carbon TGEM**

本TPCではTGEMの物質量は関係ない。 余裕を持ったオペレーションのために、TGEMを3枚での 増幅度を調べた。



# Carbon TGEM まとめ

- ・高抵抗なCarbonを極板に用いることで放電防 止する。
- Carbon TGEMは必要な増幅度~10<sup>4</sup>以上で動
   作
- Glass paperインシュレーター+ポリミドエッチング(レイテック(株))により、再現性のある作製が可能になった。
- Triple TGEMで動作を確認。最大増幅度は10<sup>5</sup>
   に達する。

### 長時間における増幅度の安定性(P/T補正)





長時間における増幅度の安定性のまとめ

- ・ADCを用いて長時間測定
- 測定したTGEM
  - Carbon-TGEM 25日間
  - Cu-TGEM (30µm Rim) 9日間
  - Hybrid-TGEM 25日間
- ・共通してHV印可後に増幅度の低下が見られる
- Carbon、Hybridは安定して動作した
- Cu w/Rim 30µmは増幅度が不安定
  - ・ Rimによるチャージアップ?

# 9角形TGEMの現状

### 9角形TGEM TPC用のTGEMは9角形

片面の極板を3分割する (TGEMの電気容量を抑えるため)

TGEMのほとんどが有感領域

作成したTGEMの種類

- Cu-TGEM
- Cu-TGEM (30µm Rim)
- Hybrid-TGEM

9角形TGEM作製時点では、Carbonはうまくいってなかった。



# 9角形TGEMの現状

- Cu-TGEMはgain ~10<sup>3</sup>で動くが、増幅度が足りない
- Cu-TGEM(30µm Rim)はRimがうまく出来ず、シグナルが見えるより低いΔVGEMでスパークする
- Hybrid-TGEMは孔内にCarbonが付着しているためか、シグナ ルが見えるより低いΔVGEMでスパークする
- TGEMの面積が大きくなることによって、10cm×10cmのTGEM で解決した問題が再び問題として上がってきた。

- Carbonを用いて9角形TGEMを作製する
- TGEMを3枚にしてオペレーションを行う。

### まとめ

- J-PARC E15実験のためにTGEM-TPCを開発中
- Carbon, Hybrid, Cu w/RIm30µmは必要な増幅度を達成
- Carbon TGEM
  - Glass paperインシュレーター+ポリミドエッチング(レイテック(株))
     により再現性の課題をクリア
  - 10cm x 10cmでは我々の要求を満たしている。
- 長期安定性
  - Carbon、HybridはOK
  - Rimがあるとgainの安定性が悪い
- TPC用 9角形TGEM
  - Rim作製がうまくいかなかった。
  - Hybrid TGEMは微妙かも
  - TGEMは大きくなると難しい

- Triple TGEMでの安定性?
- 次は9角形TGEMでチャレンジ

# ありがとうございました。

## Back up

長時間におけるエネルギー分解能



### relative gain V.S. PT



### gainとresolutionの時間依存性(24h)

|                     | E, | <sub>drift</sub> =150m        | ۱V |         |
|---------------------|----|-------------------------------|----|---------|
| $\Delta V_{ m GEM}$ | •  | $\mathbf{E}_{\mathrm{trans}}$ | •  | Einduct |
| 1                   | •  | 2.5                           | •  | 7.5     |

#### Rimが小さいと時間が経過するとともにgainが減少して行く



# 前回のおさらい



#### 放電防止の加工







### 放電防止の加工



再現性を得るためstudy

### Rimについて

マスク

脱マスク

ドリル

マスク方式

#### Rimの作り方は2通り

<u>マスク方式→50µm, 100µm Rim</u> ドリル+マスクエッチング 利点 Rimを大きくできる エッチング 欠点 Rimが均等に出来ずらい TGEMの大きさに限界がある

エッチング方式→30 µm Rim ドリル+レジストエッチング 利点 ドリル穴とRim穴の位置がずれない 大きなTGEMでも作れる 欠点 大きなRimを作ることが出来ない





エッチング方式

マスク方式

エッチング方式

レジスト

フィルム

ドリル

エッチンク

脱レジス

トフィルム

失敗例

Rimが大きいと動作の不安定性が大きくなるため、 Rimをきれいに、なるべく小さくする

スパーク頻度の測定方法



そこで検出頻度をガウス関数でフィットし、信 号頻度が5σ以下をスパークが起きていると判 断した



time [s]

#### Spark rate Cu-electrode



増幅度の計算方法



#### TGEM gain E<sub>induction</sub> dependence

HV dividerによってEinductionを変化させた。

| E <sub>drift</sub> =150mV |                      |   |                               |   |                                |  |  |
|---------------------------|----------------------|---|-------------------------------|---|--------------------------------|--|--|
|                           | $\Delta V_{\rm GEM}$ | • | $\mathbf{E}_{\mathrm{trans}}$ | • | $\mathbf{E}_{\mathrm{induct}}$ |  |  |
| type1                     | 1                    | • | 2.5                           | • | 2.5                            |  |  |
| type2                     | 1                    | • | 2.5                           | • | 5                              |  |  |
| type3                     | 1                    | • | 2.5                           | • | 6.25                           |  |  |
| type4                     | 1                    | • | 2.5                           | • | 7.5                            |  |  |



なるべく、安定なものを選ぶためΔVGEMの低いところで、 高いgainの得られるHV divider type4を選択する

### gain及び時間依存性(24h)



CEM3

| E <sub>drift</sub> =150mV |                  |   |                               |   |                                |  |  |  |
|---------------------------|------------------|---|-------------------------------|---|--------------------------------|--|--|--|
|                           | $\Delta V_{GEM}$ | • | $\mathbf{E}_{\mathrm{trans}}$ | • | $\mathbf{E}_{\mathrm{induct}}$ |  |  |  |
| type2                     | 1                | • | 2.5                           | • | 5                              |  |  |  |
| type4                     | 1                | • | 2.5                           | • | 7.5                            |  |  |  |



### C-electrode TGEMの改善策

#### 使えない(すぐに放電する)Carbon TGEMをどうにかするために、 下記のようなさまざまな試みを行った(試した歴史順)

 アルコールで洗浄→× ・全く改善せず プラズマエッチング→△ ・元々バリのない物は改善の兆しがあったが、完璧な改善はない Carbonのバリは取れない レジストフィルムや静電気防止ブラシによるバリの除去→△ ・バリは取れる、しかし、これだけでは電圧がかかるようにはならず スチーム洗浄→× ・全く改善せず ・レイテック(株)の魔法の水でエッチング→? ・基盤材料によって、効いたり効かなかったり ・エッチング時間によって、効いたり効かなかったり ・有望だが、さらなるstudyが必要 基板材料を変える(FR4/UV→CEM3)→? ・魔法の水でエッチングした物しか試してないが、gainは十分である。 ・有望だが、さらなるstudyが必要

これらを組み合わせてどうにかCarbon TGEMを動くようにしたい





| E <sub>drift</sub> =150mV |                        |                               |   |                                |  |  |  |
|---------------------------|------------------------|-------------------------------|---|--------------------------------|--|--|--|
|                           | $\Delta V_{\rm GEM}$ : | $\mathbf{E}_{\mathrm{trans}}$ | • | $\mathbf{E}_{\mathrm{induct}}$ |  |  |  |
| type4                     | 1 :                    | 2.5                           | : | 7.5                            |  |  |  |





