J-PARCにおける K中間子深束縛核探索実験(E15実験) のためのTGEM-TPC開発

東京工業大学 徳田 真

for the J-PARC E15 Collaboration

徳田真,味村周平^A,G.Beer^B, H.Bhang^C, M.Bragadireanu^{G,P}, P.Buehler^D, L.Busso^{E,F}, M.Cargnelli^D, S.Choi^C, C.Curceanu^G,橋本直^J,早野龍五^J,平岩聡彦^I,飯尾雅美^L, M.lliescu^G, 井上健太郎^H, 石川隆^J, 石元茂^M,石渡智一^J, 板橋健太^L, 岩井正明^M, 岩崎雅彦^{,L}, P.Kiele^{D,N}, 康寛史, J.Marton^D, 松田恭幸^O, 溝井浩^K, O.Morra^E,永江知文^I, 野海博之^A,大西宏明^L,岡田信二^G,應田治彦^L, D.Pietreanu^G,佐田優太^I,坂口篤志^H, 佐久間史典^L,佐藤将春^J,関本美知子^M, D.Sirghi^{G,P}, 鈴木謙^D,鈴木祥二^M,鈴木隆敏^J, 竜野秀行^J,友野大^L,豊田晃久^M,塚田暁^L,山崎敏光^{J,L},H.Yim^K, J.Zmeskal^D

東エ大理,阪大RCNP^A,Victoria大^B,ソウル国立大^C,SMI^D,INFN-Torino^E,Torino大^F, INFN-LNF^G,阪大理^H,京大理^I,東大理^J,大阪電通大^K,理研^L,KEK^M,ミュンヘンエ大^N, 東大教養^O,IFIN-HH^P

J-PARCにおける K中間子深束縛核探索実験(E15実験) のためのTGEM-TPC開発

- ・ バーテックス検出器(TGEM-TPC)について
- TPC読み出し用増幅器TGEMの開発
- TGEM-TPCの開発状況
- まとめ

バーテックス検出器(TGEM-TPC)

E15実験に用いるCDS位置分解能向上のためのバーテックス検出器

- ・ビーム軸方向位置分解能(σ)1mmのバーテックス検出器を開発
- ・設置箇所:飛跡検出器群CDSの最も内側
- CDS全体のビーム軸方向位置分解能(σ_z):6mm→2mm

読み出し領域が狭いためワイヤーを張るのは困難→TGEMを用いる

TGEMの開発

ガス増幅器TGEM(Thick-GEM)について GEM(一般的なfoil-GEMは50μm厚) 無数の小さな孔を持つ両面に電極(銅箔)の付いた絶縁体 電極間に高い電圧をかける事でガス増幅を起こす TGEM(~400μm厚)の特徴

- ・単体で増幅機能を持つため、設置するだけで使える
- ・通常の回路基板技術をもちいて作製する事が出来る
- ・構造体に対し、有感面積が広くとれる

Garfieldによるシミュレーション

TGEMの開発

大きさ<mark>10cm×10cmの</mark>TGEM作製 TGEMテスト実験

- 増幅度測定:10⁴以上で動作するか?
- 長期間動作測定:安定かどうか?

開発途上の技術であるため、 数種類のパラメーターを変えた TGEMを作製し、その性質を調べる

放電防止の加工

TGEMの種類

開発しているTGEM(林栄精器(株)に設計、東海電子(株)で作成)

No.	Electrode	Thickness[µm]	Hole-diameter[µm]	Rim[µm]		
1	Cu	200	300	50	× 2	
2		200	500	-	× 2	
3		400	300	-	× 5	
4		400	500	_	× 2	
5	Cu	400	300	30	× 2	
6				50	× 2	
7				100	× 2	
8	С	400	300	-	×17	
9	С	600	300	_	× 2	
10	C/Cu	400	300	-	× 4	
		極板の大きさは全て10cm×10cm				

TGEMの種類

開発しているTGEM(林栄精器(株)に設計、東海電子(株)で作成)

No.	Electrode	Thickness[µm]	Hole-diameter[µm]	Rim[µm]		
1	Cu	200 1 怒 · 200 um	300	50	× 2	
	Т	L1主.300μIII、序で. 200	400µ111/3、同 6、 垣 1 恒 反			
3	Cu	400	300	-	× 5	
4		400	500	-	× 2	
5	Cu	400	300	30	× 2	
6				50	× 2	
7				100	× 2	
8	С	400 Comb on († 1		-	×17	
9	С	600	現1至study中 300	-	× 2	
10	C/Cu	400	300	-	× 4	
	極板の大きさは全て10cm×10cm					

No 3、5、10について増幅度のグラフを次に示します

TGEMの増幅度 Hybrid-TGEM Cu w/Rim 30µm Cu non Rim Cu 1.0E+05 Hybrid-TGEM ⁵⁵Fe 必要な増幅度 ٠ ΔV_{GEM} TGEM 1 Cu non Rim • w/Rim 30µm TGEM 2 Hybrid-TGEM 🔺 w/30μm Rim R/O pad Cu nonRim 1.0E+02 ⁹⁵⁰ ΔV_{GEM}[V] 800 850 900 1000 1050 1100

放電防止の処理により、増幅度104以上で安定に動作

長時間動作実験(rawデータ)

peak ratio

30µmRim-TGEM、Hybrid-TGEMどちらも 増幅度10⁴以上で長時間動作することを確認した

長時間における増幅度の安定性(P/T補正)

30µm Rim TGEM

TGEM-TPCの開発状況

実際のTGEM-TPC

8mn

field cage

•FPC基盤 •8mm strip •10mm pitch •double sided

0mm

R/O pad size 4mm×20mm

pad数 4×4×9=144 TGEM

TGEM-TPCの現状

- TGEM-TPC本体組立完了
- ・フィールドケージの高電圧印可 テスト終了。10kVまで印可
- 9角形TGEMにより、TPC内で
 各パッドで線源の信号検出

55Fe線源の各パッドでの信号(プリアンプアウト)

まとめ

- ・CDS位置分解能向上のためTPCを開発
- 開発したTGEMは十分に使える

増幅度10⁴以上で長時間動作する事を確認 20%以内/週間、5%以内/日で安定動作を確認

線源を用いてTGEM-TPCによる信号を確認

宇宙線、線源、ビームを用いたテスト実験によるTGEM-TPCの性能評価

ご清聴ありがとうございました

Back up

J-PARC E15実験

K⁻pp束縛状態の存否を決定的なものとする

- ・生成反応による前方中性子のTOFによるミッシングマス測定
- ・K⁻pp→Ap崩壊の終状態からのK⁻ppの不変質量を再構成

K-ppの崩壊チャンネル

Σ+の測定: Λに比べΣの平均飛行距離はおよそ1/10→Λp崩壊の測 定を狙ったCDSは位置分解能向上が必要になる

増幅度の計算方法

増幅度の測定パラメーター依存

TGEMの増幅度

TGEMの構造

P/T補正曲線

長時間のエネルギー分解能の安定性

実際のTPC-R/O用TGEM

9角形TGEM

TPC用のTGEMは9角形

片面の極板を3分割する (TGEMの電気容量を抑えるため)

TGEMのほとんどが有感面積

R/O-pad

パッドの大きさ 4mm×20mm

パッド数 4×4×9=144

