軽いK中間子原子核の系統的測定 Systematic Investigation of the Light Kaonic Nuclei

Online The Physical Society of Japan 2021 Annual (76th) Meeting All divisions March 12- 15, 2021

Physics Goal

Reveal the meson properties inside nuclei via the \overline{KN} interaction

Many Questions to be Answered

- Further details of the *KNN*
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
- A(1405) state
 - $-\overline{K}N$ quasi-bound state as considered?
 - Size?
 - Relation between $\overline{K}N$ and $\overline{K}NN$?
- More heavier kaonic nuclei?
 - Mass number dependence?
- Double kaonic nuclei?
 - Much compact and dense system?

K⁻pp

K⁻p

• More heavier system must be explored to provide more conclusive evidence of the kaonic nuclei

> The $\overline{K}NNNN$ system is expected to be the most compact system due to an α particle configuration

New Project @ J-PARC

-- systematic investigation of the light kaonic nuclei --

Strategy of the New Project

- for systematic study from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

	Reaction	Decays	Кеу
$\overline{K}N$	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	F-factor \rightarrow n/ γ identification
<i>K</i> NN	³ He(K⁻,N)	$\Lambda p/\Lambda n$	$J^{P} \rightarrow polarimeter$
<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance
<i>K</i> NNNN	⁶ Li(K⁻,d)	Λt/Λdn/Λpnn	many body decay
$\overline{K}\overline{K}NN$	\bar{p} + ${}^{3}He$	ΛΛ	$ar{p}$ beam yield

To realize the systematic measurements, we need

a large acceptance spectrometer

detect/identify all particles to specify the reaction

high-intensity kaon beam

- more K⁻ yield than the existing beamline
- We take a step-by-step approach

modified K1.8BR

← new CDS

A First Step: Search for *KNNN*

via ⁴He(1 GeV/c K⁻, n) reaction

Goals of the proposed experiment:

(1) Observe the K⁻ppn state via 2-body Λd decay

Establish the existence of the kaonic nuclei

Reconstruct the K⁻ppn state via 3-body Λpn decay As a feasibility study to access heavier system

Feasibility study of proton spin-direction measurement

> e.g., by installing a prototype module of a polarimeter

A New Cylindrical Detector System

A new 4π spectrometer with n/ γ detection capability

A New Cylindrical Detector System

- Cylindrical Drift Chamber
- Neutron Counter
- FWD/BWD Drift Chambers
- Vertex Fiber Tracker
- Electromagnetic Calorimeter (constructed in 2nd-stage)

Solid angle: ~x1.5 (~90%) Neutron detection capability: ~x10

(~1.5x15%)

Improvement of Kaon Intensity

- We propose a new configuration of the beamline
 - K- yield is expected to increase by ~ 1.4 times @ 1.0 GeV/c

Expected Yield of $\overline{K}NNN$

$$N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$$

$$\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$$

- assume the K⁻ppn cross section of $\sigma(K^-ppn) \cdot Br(\Lambda d) \sim 10 \ \mu b$ $\sigma(K^-ppn) \cdot Br(\Lambda pn) \sim 10 \ \mu b$
 - The same CS of "K-pp" → Λp in E15
 As for Λd decay, we refer to the absorption of stopped K⁻ on ⁴He
 → decay fraction to Σ⁻pd : Σ⁻ppn ~ 1 : 1

absorption of stopped K⁻ on ⁴He

Reaction	Events/(stopping K^-) (%)
$K^{-}\text{He}^{4} \rightarrow \Sigma^{+}\pi^{-}\text{H}^{3}$ $\rightarrow \Sigma^{+}\pi^{-}dn$ $\rightarrow \Sigma^{+}\pi^{-}pnn$ $\rightarrow \Sigma^{+}\pi^{0}nnn$ $\rightarrow \Sigma^{+}nnn$	$9.3 \pm 2.3 \\ 1.9 \pm 0.7 \\ 1.6 \pm 0.6 \\ 3.2 \pm 1.0 \\ 1.0 \pm 0.4$
$F \text{ total } \Sigma^{+} = (17.0 \pm 2.$ $K^{-} \text{He}^{4} \rightarrow \Sigma^{-} \pi^{+} \text{H}^{3}$ $\rightarrow \Sigma^{-} \pi^{+} dn$ $\rightarrow \Sigma^{-} \pi^{0} \text{ He}^{3}$ $\rightarrow \Sigma^{-} \pi^{0} pd$ $\rightarrow \Sigma^{-} \pi^{0} pd$ $\rightarrow \Sigma^{-} pd$ $\rightarrow \Sigma^{-} pdn$ $T \text{ total } \Sigma^{-} = (13.8 \pm 1.0)$	$7)\%$ 4.2 ± 1.2 1.6 ± 0.6 1.4 ± 0.5 1.0 ± 0.5 1.0 ± 0.5 1.0 ± 0.4 1.6 ± 0.6 2.0 ± 0.7
$K^{-}\text{He}^{4} \rightarrow \pi^{-}\Lambda \text{ He}^{3}$ $\rightarrow \pi^{-}\Lambda \text{ pd}$ $\rightarrow \pi^{-}\Lambda \text{ pd}$ $\rightarrow \pi^{-}\Delta \text{ pd}$ $\rightarrow \pi^{-}\Delta^{0} \text{ ppn}$ $\rightarrow \pi^{-}\Sigma^{0} (\text{pd}, \text{ppn})$ $\rightarrow \pi^{0}\Lambda (\Sigma^{0}) (\text{pnn})$ $\rightarrow \pi^{+}\Lambda (\Sigma^{0}) \text{nnn}$ $\text{Total }\Lambda (\Sigma^{0}) = (69.2\pm 0.25)$	$ \begin{array}{r} 11.2\pm2.7\\ 10.9\pm2.6\\ 9.5\pm2.4\\ 0.9\pm0.6\\ 0.3\pm0.3\\ 22.5\pm4.2\\ 11.7\pm2.4\\ 2.1\pm0.7\\ 5.6)\% \end{array} $
$\text{Total} = \Lambda + \Sigma = (100_{-7}^{+0})\%$	

PRD1(1970)1267

- Similar parameters obtained with the K⁻+³He→Apn (PRC102(2020)044002.) are adopted to K⁻ppn/QF/BG shapes
- K-ppn signal [<u>q-independent</u>] will be seen clearly

- Assumption: similar parameters obtained at E15
- Mass-number dependence of the kaonic nuclei will be provided for the first time.

Summary

- We observed the "K⁻pp" bound state in ³He(K⁻,Λp)n
 ✓ PLB789(2019)620., PRC102(2020)044002.
- As the next step, the new project has been launched to reveal the properties of the light kaonic nuclei from the $\overline{K}N$ to $\overline{K}NNNN$
 - a powerful probe to understand low energy QCD
 - > the best approach to cold & high-density nuclear matter
- We take a step-by-step approach:
 - a $\overline{K}NNN$ search via 4He(K-,N) reactions as a first step
 - followed by a spin/parity measurement of the $\overline{K}NN$, soon
 - experimental challenges of $\overline{K}N$, $\overline{K}NNNN$, and $\overline{K}\overline{K}NN$ will also be followed

J-PARC P80 Collaboration

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma^{*}, T. Yamaga RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan

K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

H. Ohnishi, Y. Sada, C. Yoshida Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan

M. Iio, S. Ishinoto, K. Ozawa, S. Suzuki High MCONTROP CONTROP OF CONTROL Agaan T. Akaishi

Department of Physics, Osaka University, Osaka, 560-0043, Japan

T. Nagae Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, M. Simon, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

Thank you for your attention!

Many Questions to be Answered

- Further details of the $\overline{K}NN$
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
 - Other decay modes?

πΣN mesonic decay

- expected to be the dominant channel
 - only YN non-mesonic decays were reported

Reaction mechanism

- relation between $\Lambda(1405)=$ "K⁻p" & "K⁻pp"
 - "K⁻pp" is expected to be produced via $\Lambda(1405)+p \rightarrow$ "K⁻ pp" door-way process

K^{-3} He → πΣpn @ E15

CDS

Experimental challenge of neutron detection with thin scintillation counter (t=3cm)

n detection efficiency ~ 3-10%

$\pi\Sigma pn$ Events

BG Subtracted IM($\pi^{\pm}\Sigma^{\mp}$) in $\pi^{\pm}\Sigma^{\mp}pn$

\mathbf{Y}^*pn Final State

$\Lambda(1405)pn$ Final State Selection

- IM(Λ (1405)p) distributes above the M(Kpp)
- QF K-N \rightarrow K^{bar}n followed by K^{bar}NN \rightarrow Λ (1405)p

Detector acceptances of Λpn and $\pi \Sigma pn$

Σ^*N bound state? Other possibilities?

$$\Sigma(1385) 3/2^+$$
 $I(J^P) = 1(\frac{3}{2}^+)$
 $\Sigma(1385) DECAY MODES$
 Fraction (Γ_i/Γ)

 $\Lambda \pi$
 (87.0 ± 1.5)%

 $\Sigma \pi$
 (11.7 ± 1.5)%

- Σ* coupling through K^{bar}-N channel (P-wave) would be weak
 ✓ A.Cieply et al., PRC84(2011)045206, etc.
- Naively, Σ*N system with 1⁺/2⁺ state (S-wave) could not be bound, because corresponding ΔN system (non-strangeness sector) is considered to be no-bound or quite-weakly bound
 - ✓ R. D. Mota et al., PRC59(1999)46, etc.

need J^P determination with a polarimeter

- The K^{bar}NN state (I=1/2, J^P=0⁻) is calculated with a K^{bar}NN- $\pi\Sigma$ N- $\pi\Lambda$ N coupled channel system, where the $\pi\Lambda$ N coupling is expected to be small
- The K^{bar}NN state with J^P=1⁻ (K^{bar}-d like configuration) is expected to not be bound, or have small B.E.

✓ S.Ohnishi et al., PRC95(2017)065202, etc.

Σ^*N bound state? Other possibilities?

• One theoretical possibility is a " $\pi\Lambda N$ - $\pi\Sigma N$ dibaryon"

Nuclear Physics A 897 (2013) 167–178

Relativistic three-body calculations of a Y = 1, $I = \frac{3}{2}$, $J^P = 2^+ \pi \Lambda N - \pi \Sigma N$ dibaryon

H. Garcilazo^a, A. Gal^{b,*}

• Calculated $\pi\Lambda N$ resonance with $\Sigma^*N-\Delta\Sigma$ configuration is: - I=1/2, J^P=2⁺ : E = -10-i52 MeV

 $-I=3/2, J^{P}=2^{+}: E = -120-i2.6 MeV$ with respect to M(K^{bar}NN)

- The obtained K⁻pp parameter at E15 is **E=-40-i50 MeV**
- Therefore, the "observed K-pp structure" would be different from the " $\pi\Lambda N$ - $\pi\Sigma N$ dibaryon"

"K⁻ppn" Candidates so far

^{^{c/oseup} 4}He(stopped-K⁻,p/n)X A few candidates have been reported in *inclusive* PLB659(2008)107, PLB688(2010)43 measurements 0.2 - ⁴He(stopped-K⁻,p/n)X 3000 3050 3100 3200 3000 3150 Missing Mass (MeV/c²) Li/C(stopped-K⁻, Λ d) FINUDA@DAΦNE **Observed?** Units - Li/C(stopped-K⁻, Λd) 0.8 (Arb 0.6 FOPI@GSI ← Observed? $dn/dm_{\Lambda d}$ 0.4 $-\Lambda d$ in Ni+Ni 1.0 -0.50.0 cos0 0.2 .B654(2007)80 0.0 3100 3200 3300 3000. **Exclusive measurement** $m_{\Lambda d}$ (MeV/c²) using a simple reaction 4000 P2 $3.159 \pm$ 1392E-01 3000 (in-flight & light nuclei) is EXA05 Conference (2005) 2000 crucia 1000 3.8 3.2

3

3.2

M_{inv}(GeV)

3.6

3

3.4

M_{inv}(GeV)

3.6

3.8

Expected Yield of *KNNN*

$$V = \sigma \times N_{beam} \times N_{target} \times \epsilon,$$

$$\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$$

• N_{beam} = **100 G** K- on target

 \mathbb{N}

- under the MR beam power of 90 kW with 5.2 s repetition cycle. around 2024
 - 3.2 x 10⁵ K- on target / spill @ 1.0 GeV/c
- 3 weeks data taking (90% up-time)
- N(K⁻ppn→Λd) ~ 2 x 10⁴
- N(K⁻ppn→∧pn) ~ 3 x 10³
 - c.f. 1.7 x 10³ "K⁻pp" → Λp accumulated in E15-2nd (40 G K⁻)

	Λd / Λpn
σ(K⁻ppn)*Br	10 µb
N(K ⁻ on target)	100 G
N(target)	2.65 x 10 ²³
ε (DAQ)	0.9
ε(trigger)	0.93
ε(beam)	0.55
Ω(CDC)	0.27 / 0.077
ε(CDC)	0.6 / 0.3
N(K ⁻ ppn)	19 k / 2.8 k

* improved from E15