Current status of the thick-GEM TPC for the J-PARC E15 experiment

Fuminori Sakuma (RIKEN)

Tum-Riken Kick-Off Meeting @ TUM, May 10-11, 2010.

Contents

 Introduction
 TGEM-TPC for the J-PARC E15 exp.
 Thick GEM (TGEM) goal: gain ~10⁴ with stable operation in P10 @ NTP
 Results of TGEMs in P10 @ NTP
 Cu-electrode TGEMs

- C-electrode TGEMs
- C/Cu-electrode Hybrid TGEMs
- Summary

J-PARC E15 Experiment

search for K-pp bound state using ³He(K⁻,n) reaction

J-PARC E15 Setup

measurement of mesonic decay-mode of K⁻pp

TGEM-TPC for the J-PARC E15 exp.

TGEM-TPC for the J-PARC E15 exp.

•TGEM-TPC is located at the center of Cylindrical Detector System

located between CDC and target-chamber
cover the CDC acceptance of AUVA
minimum materials in the acceptance
1mm spatial resolution in the z-direction

completed TGEM-TPC

double sidedFPC8mm strip10mm pitch

non-necessity of support-structure!

making of Field Cages

Readout Electronics is the same as that of CDC

Chip : CXA3183Q (SONY, low noize ASD IC, -τ=16nsce) τ=80nsec
Output : LVDS differential
Gain : 0.8V/pC at preamp
4x4=16ch

We measure only time info. with the TPC!

gas

limit of HV module : 15kVGEM HV: 4kVdrift length: 30cm

maximum drift-field voltage : ~350V/cm

We choose P10 (Ar/CH₄=90/10) for the TGEM-TPC gas

expected resolution

$$\sigma_x^2 = \sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}$$

- $\sigma_{\textbf{x}}~$: total resolution
- $\sigma_0~$: resolution w/o diffusion
- C_d : diffusion constant
- z : drift distance
- N_{eff} : effective number of electrons

φ-direction resolution is limited
by pad size, e.g.,
20.0/sqrt(12) = 5.8mm
So we use only z-direction info.

Thick GEM (TGEM)

goal: gain ~ 10⁴ with stable operation

What is TGEM ?

Thick-GEM is ...

•cost-effectively fabricated from double-clad G10 plates, using standard printed circuit board (PCB) techniques

- holes are mechanically drilled (and, if necessary, the hole's rim is chemically etched to prevent discharges)
- a robust, simple to manufacture, high-gain gaseous electron multiplier
 easy to operate and feasible to cover large areas, compared to the standard foil GEM

TGEM prototypes

goal

- gain∼10⁴ @ P10, NTP (double TGEMs)
- stabile operation for a month, with gain fluctuation within ~a few ten % for a month & a few % for a day

many groups have reported TGEMs work successfully, but actually it's NOT so easy to operate TGEM with high gain stably!

- ➤ they use small TGEMs, e.g. ~3x3cm²
- most of them don't discuss stability of TGEM

We have studied basic TGEM behavior and performance.

TGEM prototypes @ RIKEN

produced by REPIC corp. and TOUKAI DENSHI KOUGYOU corp.

No.	Electrode	Insulator	Thickness[µm]	Hole-diameter[µm]	Rim[µm]	
1	Cu	FR4/UV	200	300	50	× 2
2	Cu	FR4/UV	200	500	-	× 2
3	Cu	FR4/UV	400	300	-	× 5
4	Cu	FR4/UV	400	300	30	× 2
5	Cu	FR4/UV	400	300	50	× 2
6	Cu	FR4	400	300	100	× 2
7	Cu	FR4/UV	400	500	-	× 2
8	С	FR4	400	300	-	× 4
9	С	FR4/UV	400	300	-	× 7
10	С	G10	400	300	-	× 2
11	С	CEM3	400	300	-	× 2
12	С	FR4	600	300	-	× 2
13	C/Cu	FR4/UV	400	300	-	× 4
				size : 10cm x 10c	m	Total 40

many TGEM prototypes

Test bench setup

Results of TGEMs

Cu-electrode TGEM

No.	Electrode	Insulator	Thickness[µm]	Hole-diameter[µm]	Rim[µm]	Max gain
1	Cu	FR4/UV	200	300	50	~ 10 ³
2	Cu	FR4/UV	200	500	_	-
3	Cu	FR4/UV	400	300	-	~10⁴
4	Cu	FR4/UV	400	300	30	over 2×10^4
5	Cu	FR4/UV	400	300	50	over 2 × 10 ⁴
6	Cu	FR4	400	300	100	over 2 × 10 ⁴
7	Cu	FR4/UV	400	500	_	~ 10 ³
	Rim of Rim of w/o Ri	Rim of 50,100µm : Weizmann method (drilling + masked etching) Rim of 30µm : CERN method (drilling + resist etching) w/o Rim (#3) : w/ hydrogen peroxide - sulfuric acid etching				

TGEMs with thickness of 400 μm and hole diameter of 300 μm achieve maximum gain of 10^4

dependence on rim size

E_{drift}=150V/cm the limits of gain around 10⁵ is caused : E_{trans} (V/cm) : E_{induct} (V/cm) ΔV_{GFM} (V) by reather limit (source = ${}^{55}Fe$). 2.5 7.5 1 1.0E+05 goal 1.0E+04 **effective gain** 1.0E+03 1.0E+02 Cu Rim 100μm 🗖 Cu Rim 50µm 🛦 Cu Rim 30µm 1.0E+01 Cu no Rim 1.0E+00 900 1000 1100 800 1200 $\Delta V_{GFM}[V]$

TGEM with larger rims requires higher voltage, but enables higher gain 21

gain and resolution stability (24h)

TGEM without rims (-) is stable

●initial drop of gain is caused by charge-up (polarization?) of the insulator?

Instability of TGEMs with rims is caused by charge-up of the insulator not metalized.

•mismatch of the center of the etched and drilled holes and incomplete round-shape of rims cause the instability.

long term stability (30µm rims TGEM, 10days)

TGEM with 30µm rims can be operated with gain of more than 10⁴ for the long term @ P10, NTP
 gain stability is within ~50%/week & ~10%/day

23

C-electrode TGEM

To avoid the effects of rims, we are developing a new resistive-electrode TGEM (RETGEM) which has electrodes coated with graphite paint.
RETGEMs have an advantage of being fully spark-protected.

No.	Electrode	Insulator	Thickness[µm]	Hole-diameter[µm]	Rim[µm]	Max gain
8	С	FR4	400	300	-	over 2×10^4
9	С	FR4/UV	400	300	-	-
10	С	G10	400	300	-	~ 10 ³
11	С	CEM3	400	300	-	over 2×10^4
12	С	FR4	600	300	_	~ 10 ²

Results of the first sample

carbon TGEMs have no reproducibility at all !!!

only first 2 out of 11 samples of RETGEMs work !!!

discharge from burrs arising from drilling process (but these can be removed using antistatic-brush) carbon attachment inside the holes caused by knot of FR4 fiber

→now, we have been studying another insulator of CEM3 not FR4/G10²⁶

C/Cu-electrode Hybrid-TGEM

●In principle, if one side of electrode is resistive then that would be spark-protected.

•Hybrid-TGEM would have a possibility of reduction of carbon attachment inside the holes.

No.	Electrode	Insulator	Thickness[µm]	Hole-diameter[µm]	drill	
13	C/Cu	FR4/UV	400	300	Cu→C	× 2
	C/Cu	FR4/UV	400	300	C→Cu	× 2

Results of C/Cu-electrode Hybrid TGEM

time [h]

Summary

- We have been developing a **TGEM-TPC** for the J-PARC E15 upgrade
- TGEM-TPC was completed, and commissioning will be started soon
- Cu electrode TGEM with 30µm rims can be operated with gain of more than 10⁴ for the long term rather stably @ P10, NTP
- **C-electrode TGEM** is far from goal...
- C/Cu electrode TGEM can be operated with gain of more than 10⁴ for the long term stably @ P10, NTP

C electrode TGEM with CEM3 insulator

•Now we are investigating reproducibility of CEM3 RETGEM

•A disadvantage of CEM3 RETGEM is its flexibility

How to make Rims

There are 2 ways

It's known that large rims cause instability of TGEMS, although those enable TGEMs to reach high gain.

ET, El dependence (Rim 30µm TGEM)

signals and goal of the studies

P/T correction of gain

after-treatment of C-electrode TGEM

We tried many items to make the C-electrode TGEMs work

- ethanol cleaning → ×
 does not improve at all
- plasma etching $\rightarrow \Delta$

• improves a little bit, but it's not perfect

- does not remove burrs of carbon
- removing burrs with resist-film and/or antistatic-brush $\rightarrow \Delta$ -removes burrs, but does not improve
- steam cleaning $\rightarrow \times$

does not improve at all

• polyimide etching \rightarrow ?

• effects are depend on material of the insulator

- and also depend on etching time
- change insulator (FR4/UV \rightarrow CEM3) \rightarrow ?

• CEM3 TGEMs work good, but that are after polyimide etching (we did not check the without the etching)

We have to study more

Outlook

- Nonagonal TGEMs (w/o rims and Cu-rim-30µm) and Hybrid-TGEMs for the TPC were produced, and studies have started now.
- Development of Carbon TGEMs will be continued in the year 2010.

Physics Motivation

deeply-bound kaonic nuclear states exist?

