A search for double anti-kaon production in antiproton-³He annihilation at J-PARC

F.Sakuma, RIKEN

Strangeness in Nuclei @ RIKEN, June 12, 2010.

This talk is based on the LoI submitted in June, 2009.

Letter of Intent for J-PARC

Double Anti-kaon Production in Nuclei by Stopped Anti-proton Annihilation

dated on 17 / 06 / 2009

M. Iwasaki¹, P. Kienle^{2,3}, H. Ohnishi¹, F. Sakuma^{1*}, and J. Zmeskal² ¹RIKEN, Japan ²Stefan Meyer Institut für subatomare Physik, Austria ³Technische Universitat Munchen, Germany

Abstract

We propose to search for double strangeness production by \bar{p} annihilation on helium nuclei at rest. The proposed experiment will provide significant information on double strangeness production and double strangeness cluster states.

Contents

 Possibility of "Double-Kaonic Nuclear Cluster" by Stopped-p^{bar} Annihilation
 Experimental Approach
 Summary What will happen to put one more kaon in the kaonic nuclear cluster?

Possibility of "Double-Kaonic Nuclear Cluster" by Stopped-p^{bar} Annihilation

Double-Kaonic Nuclear Cluster

The double-kaonic nuclear clusters have been predicted theoretically.
The double-kaonic clusters have much stronger binding energy and a much higher density than single ones.

	B.E. [MeV]	Width [MeV]	Central- Density
К-К-рр	-117	35	
K-K-ppn	-221	37	17 ρ ₀
К-К-ррр	-103	-	
K-K-pppn	-230	61	14p ₀
К-К-рррр	-109	-	

PL, B587, 167 (2004). & NP, A754, 391c (2005).

How to produce the double-kaonic nuclear cluster?

- ➢ heavy ion collision
- \succ (K⁻,K⁺) reaction
- ➢p^{bar}A annihilation

We use p^{bar}A annihilation

Double-Strangeness Production with p^{bar}

The elementary p^{bar}-p annihilation reaction with double-strangeness production:

 $\overline{p} + p \rightarrow K + \overline{K} + K + \overline{K} - 98 \text{MeV}$

This reaction is **forbidden for stopped p**^{bar}, because of a negative Q-value of 98MeV

If multi kaonic nuclear exists with deep bound energy, following p^{bar} annihilation reactions **will be possible**!

$$\overline{p} + {}^{3}He \rightarrow K^{+} + K^{+} + K^{-}K^{-}pn + B_{KK}^{pn} - 106 \text{MeV} \xrightarrow{\text{theoretical prediction}} \\ \overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}pp + B_{KK}^{pp} - 109 \text{MeV} \xrightarrow{\text{B.E.=117MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{+} + K^{-}K^{-}pnn + B_{KK}^{pnn} - 126 \text{MeV} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} - 129 \text{MeV} \xrightarrow{\text{B.E.=221MeV}} \\ \overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + K^{-}K^{-}ppn + B_{KK}^{ppn} + K^{-}K^{-}pn + B_{KK}^{ppn} + K^{-}K^{-}pn + E_{KK}^{ppn} + K^{-}K^{-}pn + E_{KK}^{ppn} + K^{-}K^{-}pn + E_{KK}^{ppn} + K^{-}K^{-}pn + E_{KK}^{ppn} + E_{KK}^$$

K⁻K⁻pp in p^{bar}+³He annihilation at rest?

The possible mechanisms of the K⁻K⁻pp production are as follows:

1 direct K⁻K⁻pp production with 3N annihilation

 $\textcircled{2}\Lambda^*\Lambda^*$ production with 3N annihilation followed by the K^K pp formation

③ elementally p^{bar}+p→KKKK production in nuclear matter followed by the K⁻K⁻pp formation

However, there are many unknown issues, like:

- (1) $\Lambda\Lambda$ pair is likely to be formed compared with the K⁻K⁻pp! (2) how large is the $\Lambda^*\Lambda^*$ binding energy?
- **③** is it possible?

Anyway, if we extrapolate simply the experimental results of the K⁻pp: FINUDA@DAFNE \rightarrow B.E. ~ 120 MeV, Γ ~ 70 MeV DISTO@SATURNE \rightarrow B.E. ~ 100 MeV, Γ ~ 120 MeV then, we can assume the double binding strength: B.E ~ 200 MeV, Γ ~ 100 MeV.

Past Experiments of Double-Strangeness Production in Stopped-p^{bar} Annihilation

A result of a search for double-strangeness productions in antiprotonnuclei annihilations was reported by using the **BNL bubble chamber**, in association with the H-dibaryon search.

> They did NOT observed any double-strangeness event in antiproton - C, Ti, Ta, Pb annihilation (~80,000 events, p(p^{bar}) < 400 MeV/c) [Phys.Lett., B144, 27 (1984).]

Reaction	Frequency (90% C.L.)
$p^{bar}A o \Lambda^0\Lambda^0X$	<4x10 ⁻⁴
p ^{bar} A→Λ ⁰ K ⁻ X	<5x10 ⁻⁴
p ^{bar} A→K⁺K⁺X	<5x10 ⁻⁴
p ^{bar} A→HX	<9x10 ⁻⁵

Past Experiments (Cont'd)

Observations of the double-strangeness production in stopped p^{bar} annihilation have been reported by **2 groups**, DIANA@ITEP and OBELIX@CERN/LEAR.

experiment	channel	events	yield (10 ⁻⁴)
DIANA	K ⁺ K ⁺ X	4	0.31+/-0.16
[p ^{bar} +Xe]	K ⁺ K ⁰ X	3	2.1+/-1.2
	$K^+K^+\Sigma^-\Sigma^-p_s$	34+/-8	0.17+/-0.04
OBELIX	$K^+K^+\Sigma^-\Sigma^+n\pi^-$	36+/-6	2.71+/-0.47
[p ^{bar} + ⁴ He]	K⁺K⁺Σ⁻ $Λ$ n	16+/-4	1.21+/-0.29
	K⁺K⁺K⁻∆nn	4+/-2	0.28+/-0.14

Although observed statistics are very small, their results have indicated a high yield of ~10⁻⁴

Past Experiments (Cont'd)

DIANA [Phys.Lett., B464, 323 (1999).]

• p^{bar}Xe annihilation

- •p=<1GeV/c p^{bar}-beam @ ITEP 10GeV-PS
- •700-liter Xenon bubble chamber, w/o B-field
- •10⁶ pictures \rightarrow 7.8x10⁵ p^{bar}Xe inelastic \rightarrow 2.8x10⁵ p^{bar}Xe @ 0-0.4GeV/c

Channel	events	yield (10 ⁻⁴)
K ⁺ K ⁺ X	4	0.31+/-0.16
K ⁺ K ⁰ X	3	2.1+/-1.2

Past Experiments (Cont'd)

OBELIX ('86~'96) [Nucl. Phys., A797, 109 (2007).]

- •p^{bar4}He annihilation
- •stopped p^{bar} @ CERN/LEAR
- ●gas target (⁴He@NTP, H₂@3atm)
- •cylindrical spectrometer w/ B-field
- spiral projection chamber, scintillator barrels, jet-drift chambers
- •2.4x10⁵/4.7x10⁴ events of 4/5-prong in ⁴He
- • $p_{min} = 100/150/300 MeV/c$ for $\pi/K/p$

channel	events	yield (10 ⁻⁴)
$K^+K^+\Sigma^-\Sigma^-p_s$	34+/-8	0.17+/-0.04
$K^+K^+\Sigma^-\Sigma^+n\pi^-$	36+/-6	2.71+/-0.47
K⁺K⁺∑⁻∆n	16+/-4	1.21+/-0.29
K⁺K⁺K⁻∆nn	4+/-2	0.28+/-0.14

they discuss the possibility of formation and decay of K⁻K⁻nn and K⁻K⁻pnn bound system

K⁻pp Production with p^{bar} at rest

From several stopped-p^{bar} experiments, the inclusive production yields are:

$$R(\overline{p}p \to K\overline{K}) \sim 5 \times 10^{-2}$$

Very simply, the expected K⁻pp yield is larger than the K⁻K⁻pp production! The double-strangeness production yield of ~10⁻⁴ makes it possible to explore the exotic systems.

Experimental Approach

How to Measure?

we focus the reaction: $\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + X \quad (X = K^{-}K^{-}pp)$

(although K⁻K⁻pp decay modes are not known at all,) we assume the most energetic favored decay mode:

 $K^-K^-pp \to \Lambda + \Lambda$

final state = $K^+K^0\Lambda\Lambda$

We can measure the K⁻K⁻pp signal <u>exclusively</u> by detection of all particles, K⁺K⁰ $\Lambda\Lambda$, using K⁰ $\rightarrow\pi^+\pi^-$ mode

We need wide-acceptance detectors.

Expected Kinematics

K⁺K⁰X momentum spectra

$$\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0}_{S} + K^{-}K^{-}pp$$

assumptions: \checkmark widths of K⁻K⁻pp = 0

✓ isotropic decay

In the K⁻K⁻pp production channel, the kaons have very small momentum of up to 300MeV/c, even if B.E.=200MeV.

We have to construct low mass material detectors.

~200MeV/c π from K⁰_S, ~800MeV/c Λ , ~700MeV/c p from Λ , ~150MeV/c π from Λ

Procedure of the K⁻K⁻pp Search

key points of the experimental setup

- high intensity p^{bar} beam
- Iow mass material detector
- •wide acceptance detector

methods of the measuremt

- (semi-inclusive) $K^0_{S}K^+$ missing-mass w/ Λ -tag
- •(inclusive) $\Lambda\Lambda$ invariant mass
- •(exclusive) $K^0_{S}K^+\Lambda\Lambda$ measurement

Beam-Line

We would like to perform the proposed experiment at J-PARC K1.8BR beam line

Detector Design

Key points

- low material detector system
- •wide acceptance with pID

E15 CDS @ K1.8BR

Detector Acceptance

P^{bar}+³He →K⁺+K⁰_S+K⁻K⁻pp, K⁻K⁻pp → $\Lambda\Lambda$, Γ (K⁻K⁻pp)=100MeV

Expected K⁻K⁻pp Production Yield

- •pbar beam momentum : 0.65GeV/c
- •beam intensity :

we assume:

•pbar stopping rate :

•stopped-p^{bar} yield : 140/spill/3.5s

\checkmark

20% of the upper limit of the double-strangeness production

- K⁻K⁻pp production rate = 10⁻⁴
- duty factors of the accelerator and apparatus = 21/24

K-K-pp production yield = 300 / day @ 50kW

[1day= 3shifts]

3.7x10³/spill/3.5s @ 50kW

Expected K⁻K⁻pp Detection Yield

P^{bar}+³He → K⁺+K⁰_S+K⁻K⁻pp, K⁻K⁻pp → $\Lambda\Lambda$, Γ (K⁻K⁻pp)=100MeV

Trigger Scheme

expected stopped-p^{bar} yield = 140/spill

All events with a scintillator hit can be accumulated

Backgrounds

(semi-inclusive) $K_{s}^{0}K^{+}$ missing-mass w/ Λ -tag

 \diamond stopped-p^{bar} + ³He \rightarrow K⁰_S + K⁺ + K-K-pp

3N annihilation

2N annihilation

♦ stopped-p^{bar} + ³He → K^0_s + K^+ + K^0 + Σ^0 + (n) ♦ stopped-p^{bar} + ³He → K^0_s + K^+ + Ξ^0 + (n) ...

Backgrounds (Cont'd)(inclusive) $\Lambda\Lambda$ invariant mass \diamond stopped-p^{bar} + ³He \rightarrow K⁰_s + K⁺ + K-K-pp
 $\rightarrow \Lambda + \Lambda$ missing 2γ \diamond stopped-p^{bar} + ³He \rightarrow K⁰_s + K⁺ + K-K-pp
 $\rightarrow \Sigma^0 + \Sigma^0$ missing $2\gamma + \pi^0$ \diamond stopped-p^{bar} + ³He \rightarrow K⁰_s + K⁺ + K-K-pp
 $\rightarrow \Sigma^0 + \Sigma^0$

Expected Spectra

Monte-Carlo simulation using GEANT4 toolkit
reaction and decay are considered to be isotropic and proportional to the phase space
energy losses are NOT corrected in the spectra
w/o Fermi-motion

expected spectra are obtained with the following assumptions:

production rate:

- •K⁻K⁻pp bound-state = 1x10⁻⁴
- •(3N) K⁻K⁻ $\Lambda\Lambda$ phase-space = 5x10⁻⁵
- •(3N) K⁺K⁰ $\Sigma^{0}\Sigma^{0}\pi^{0}$ phase-space = 5x10⁻⁵
- •(2N) K⁺K⁰K⁰Σ⁰(n) phase-space = 3x10⁻⁴

- ➤ total yield : upper limit of p^{bar}A→KKX, 5x10⁻⁴
- 3N: 20% of total yield, and 3N:2N = 1:3
- K⁻K⁻pp yield : 20% of total yield

Expected Spectra (Cont'd)

•BR(K⁻K⁻pp $\rightarrow \Lambda\Lambda$) = 0.25 •BR(K⁻K⁻pp $\rightarrow \Sigma^{0}\Sigma^{0}$ = 0.25 •BR(K⁻K⁻pp $\rightarrow \Sigma^{0}\Sigma^{0}$ = 0.25 •BR(K⁻K⁻pp $\rightarrow \Sigma^{0}\Sigma^{0}\pi^{0}$) = 0.5

non-mesonic : mesonic = 1 : 1

because the $\Sigma\Sigma\pi\pi$ decay channel expected as the main mesonic branch of the K⁻K⁻pp state could decrease due to the deep binding energy of the K⁻K⁻pp

Expected Spectra @ 50kW, 6weeks (126shifts)

 $\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + \Lambda + \Lambda + X$

 $\overline{p} + {}^{3}He \rightarrow \overline{K^{+} + K^{0} + \Lambda + \Lambda} (+X)$

In the $\Lambda\Lambda$ spectra, we cannot discriminate the K-K-pp $\rightarrow \Lambda\Lambda$ signals from the backgrounds clearly, if we assume the above parameters.

Spectra @ 50kW, 6weeks (126shifts) (Cont'd)

$$\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + \Lambda + X$$

 $\overline{p} + {}^{3}He \rightarrow \overline{K^{+} + K^{0} + \Lambda + \Lambda}(+X)$

The K⁰K⁺ missing mass spectroscopy with $\Lambda\Lambda$ is attractive for us because we can ignore the 2N-annihilation, even though the expected statistics are small.

Sensitivity to the K⁻K⁻pp signal @ 50kW, 6weeks (126shifts)

- •the K⁻K⁻pp production rate is varied
- but the background yields are constant as used above
- •significance [S/sqrt(S+B)] is obtained in 2600 2720 MeV

Summary

Summary

•We will search for double anti-kaon nuclear bound states by pbar annihilation on 3He nuclei at rest, using the $p^{bar} + {}^{3}He \rightarrow K^{+} + K^{0} + X$ (X = K⁻K⁻pp) channel.

•The produced K⁻K⁻pp cluster will be identified with missing mass spectroscopy using the K⁺K⁰ channel with a Λ -tag, and invariant mass analysis of the expected decay particles from the K⁻K⁻pp cluster, such as $\Lambda\Lambda$ by using the E15 spectrometer at the K1.8BR beam line.

•We are preparing the proposal to J-PARC now.

However, there are problems.

●The assumption of the K⁻K⁻pp production yield is not realistic, because the yield of 10⁻⁴ is very optimistic assumption and the maximum upper limit.

•The past measurement of the OBELIX group, which is our baseline of the assumptions, is very doubtful experimentally, because they could NOT reconstruct the $\Lambda \rightarrow p\pi^-$ channel. (*This channel is used as* fundamental test of spectrometer performances.)

•So we are reconstructing our strategy from the basics, e.g., measurement of

 $p^{bar}+d \rightarrow K^0+\Lambda(1405)$

which has never been tried, and also

 $p^{bar}+^{3}He \rightarrow K+\Lambda(1405) +N.$