J-PARC Japan Proton Accelerator Research Complex

J-PARC Hadron Hall Extension Project

F.Sakuma, RIKEN on behalf of HEF-ex TF

sakuma@ribf.riken.jp

HUA

Hadron in Nucleus 2025 (HIN25), 2–4 Apri., 2025, Kyoto

_inac

Neutrino Experimental Facility

Material and Life Science Experimental Facility

Main Ring

Synchrotron

Hadron

Experimental

Facility

Particle and Nuclear Physics @ J-PARC

Neutrino Experimental Facility

Material and Life Science Experimental Facility

Origin & Evolution of Matter

Matter-Antimatter Symmetry

matter dominated universe

Origin of Matter Creation

formation of hadrons from quarks

Flavor Physics

CP violation weak interaction → new physics

Kaon rare decays $\mu \rightarrow e$ conversion

Hadron Physics

quark interactions hadron mass-generation mechanism Hadron spectroscopy Meson in nuclei

Matter in Extreme Conditions

dense matter in neutron stars

Strangeness Nuclear Physics

hadron interactions hadronic many-body systems Hyperon-Nucleon scattering Hypernuclear spectroscopy

Present Hadron Experimental Facility (HEF)

Achievements in research at the Hadron Experimental Facility

Further research directions at the Hadron Experimental Facility

Flavor Physics

Search for $\mu \rightarrow e$ conversion @ COMET

Hadron Physics

Measurement of spectral modification of ϕ meson in nuclei (2020~)

→ Attack mass-generation mechanism of hadrons

Strangeness Nuclear Physics

High-resolution spectroscopic study of $S=-2 \equiv$ -hypernuclei (2023~)

→ Provide accurate and systematic information on ΞN , $\Lambda\Lambda$ interactions

Hadron Experimental Facility eXtension (HEF-ex) Project

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- K1.1

Systematic ΛN scattering measurement

- intense polarized Λ beam

Investigate diquarks in baryons

High-resolution charm baryon spectroscopy

• intense high-momentum π beam

K10

High-resolution multi-strange baryon spectroscopy

intense high-momentum separated K beam

Search for new physics beyond the SM

- Most sensitive $K_L^0 o \pi^0 \nu \overline{\nu}$ measurement
 - intense neutral K beam

Expanded Research

9

at the Extended Facility

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- Systematic ΛN scattering measurement
 - intense polarized Λ beam

nvestigate diquarks in baryons

high-p

High-resolution charm baryon spectroscopy
intense high-momentum π beam

K10 Hi

- ligh-resolution multi-strange baryon pectroscopy
- intense high-momentum separated K beam

Search for new physics beyond the SM

2 Highest-sensitive $K_L^0 o \pi^0 \nu \overline{\nu}$ measurement

intense neutral K beam

Expanded Research¹⁰

Programs

at the Extended Facility

14

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- **1.1** Systematic ΛN scattering measurement
 - intense polarized Λ beam

Investigate diquarks in baryons

High-resolution charm baryon spectroscopy

• intense high-momentum π beam

K10

High-resolution multi-strange baryon spectroscopy

• intense high-momentum separated K beam

Search for new physics beyond the SM

Highest-sensitive $K_L^0 o \pi^0 \nu \overline{\nu}$ measuremen

intense neutral K beam

Expanded Research Programs

15

Behaver of non-perturbative QCD in low energy regime Hadron Physics: Diquarks in Baryons

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Behaver of non-perturbative QCD in low energy regime Hadron Physics: Diquarks in Baryons

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Charm Baryon Spectroscopy

using intense high-momentum π beam @ High-p (π 20)

Establish a diquark (ud)

 Λ_c^* : Disentangle "collective motion of ud" and "relative motion between u and d"

Multi-Strange Baryon Spectroscopy using intense high-momentum K beam @ K10

Diquarks in different systems

- **Ξ**^{*}: *us/ds* diquark
- $\mathbf{\Omega}^*$: the simplest *sss* system
 - \rightarrow diquark is expected to be suppressed

Systematic measurements will reveal the internal structure of baryons through the diquarks

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- **1.1** Systematic ΛN scattering measurement
 - intense polarized Λ beam

Investigate diquarks in baryons

high-p

High-resolution charm baryon spectroscopy
intense high-momentum π beam

High-resolution multi-st spectroscopy

• intense high-momentum separated K beam

Search for new physics beyond the SM

- Highest-sensitive $K^0_L o \pi^0
 u \overline{
 u}$ measurement
 - intense neutral K beam

Expanded Research ¹⁸ Programs

at the Extended Facility

Flavor Physics: New Physics Search at KOTO Step-2¹

Is there new physics beyond the Standard Model?

Directly break CP symmetry

- Suppressed in the SM \rightarrow Branching ratio \sim 3×10⁻¹¹
- One of the best probes for new physics searches Smal

Rare kaon decay: $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

• Small theoretical uncertainties (\sim 2%)

New physics search with world's highest sensitivity more than 100 times

- Discover the $K_L^0 \to \pi^0 \nu \overline{\nu}$ signal with 5σ
- Measure the branching ratio with 30% accuracy

Indicate new physics, if deviation form the SM > 40%

Status of the Extension Project

Status of the Extension Project

- g-2/EDM remains in the "queue" of budget requests
 - \succ HEF-ex is considered as the next to g-2/EDM.
- Construction cost has been increased.
 - ➤ (150+15) Oku-yen at PIP2022 → (200+20) Oku-yen after COVID-19/Ukraine-War
- Cost reduction/optimization, staging plans with smaller steps, and seeking budgetary support from outside KEK are being discussed for early realization of the project.
 - > We need community's help!

"International workshop" and "town meeting" on the Extension Project for J-PARC Hadron Experimental Facility 2025 (HEF-ex WS/town-meeting 2025)

- A workshop with the 2nd Town Meeting is planned as a pre-WS of HYP2025
 - aiming to promote broader international discussions
- September 26-27 (2 days)
 - 1.5 days for WS, 0.5 days for TM
- Venue: RIKEN (Wako)

22

Summary of the Extension Project of the J-PARC Hadron Experimental Facility

K1.8BR

K1.8

lest-

23

KL2

K1.1/K1.1BR

Extended hall

K1(

HIHR

High-p (π 20)

COME

- Unique research programs in both particle and nuclear physics at high-intensity frontier
- World's leading research programs in the fields of strangeness-nuclear/hadron/flavor physics
- Top-priority project in the KEK mid-term plan (FY2022-26) /
- ightarrow Project is now ready to start

Let's work together to make progress on the project!

(HUA) Thank you for your attention!

https://www.rcnp.osaka-u.ac.jp/~jparchua/en/hefextension.html

First-Beam WS at the J-PARC Hadron Experimental Hall First-Beam Worth 2009 ALOR R. M. T. C. Kali, Jepan

> International WS on physics ended hadron experimental facility of J-F

ch 2016 KEK Tokai Camp

J-PARC HEF-ex WS, Mar 14-16 2023, J-PARC

2nd J-PARC HEF-ex WS, Feb.16-18 2022, online

HEF-ex 2024, 19-21 February 2024, J-PARC

Highlights of the intense K⁻ beam experiments (1)²⁶ Ξ-hypernuclei

•<u>Attractive Ξ -nuclear potential</u> was confirmed from observation of Ξ -hypernuclei in emulsion at J-PARC (E07)

Highlights of the intense K^2 beam experiments $(1)^{2/2}$ **Ξ-hypernuclei**

FWHM

-10

EPJ Web of Conf. 271, 11002 (2022)

-15

• The first Ξ -hypernucleus spectroscopy

- Ξ potential both Re(V_{Ξ}) and Im(V_{Ξ})
- isospin dependence ($\propto 1/A$)
- $\Xi N \Lambda \Lambda$ conversion
- •Systematic measurements will be strongly promoted at J-PARC

Results coming soon

Highlights of the intense K⁻ beam experiments (2)²⁹ Kaonic nuclei

- Systematic measurement of kaonic nuclei will be promoted at J-PARC
 Solid angle: x1.6 Neutron eff.: x7
 - Mass number dependence
 - Binding energy, Branching ratio, q dependence, ..
 - Spin/parity determination
 - Internal structure extracted with theoretical investigations

	Reaction	Decays	Г			
 <i>K</i> N	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	250	_ - ₩G - _ - ₩G - _ - BGL	the larger n \rightarrow the large	uclei er B.E
$\overline{K}NN$	³ He(K⁻,N)	Λ p/ Λ n	200 (MeV	- → OHHMH(chiral) → OHHMH(AY)		
<i>K</i> NNN	⁴ He(K⁻,N)	Λd/Λpn <mark>← first step</mark>	Energy	→ Kanada(weak) ★ E15-2nd		
K NNNN	⁶ Li(K⁻,d)	Λ t/ Λ dn	ອນ 100	-	•	
<i>KNNNNN</i>	⁶ Li(K⁻,N)	$\Lambda lpha / \Lambda dd / \Lambda dpn$	₩ 50-	-		
<i>K</i> NNNNNN	⁷ Li(K⁻,N)	$\Lambda lpha$ n/ Λ ddn	0	KNN		KNNN
<i>KK</i>NN	$ar{p}$ + 3 He	ΛΛ		Ктрр	K'ppn	Кррав
	K N K NN K NNNN K NNNNN K NNNNNN K NNNNNN K NNNNNN	Reaction $\bar{K}N$ d(K ⁻ ,n) $\bar{K}NN$ ³ He(K ⁻ ,N) $\bar{K}NNN$ ⁴ He(K ⁻ ,N) $\bar{K}NNNN$ ⁶ Li(K ⁻ ,A) $\bar{K}NNNNN$ ⁶ Li(K ⁻ ,N) $\bar{K}NNNNN$ ⁷ Li(K ⁻ ,N) $\bar{K}\bar{K}NN$ \bar{p} + ³ He	ReactionDecays $\bar{K}N$ d(K ⁻ ,n) $\pi^{\pm 0}\Sigma^{\mp 0}$ $\bar{K}NN$ 3 He(K ⁻ ,N) $\Lambda p/\Lambda n$ $\bar{K}NNN$ 4 He(K ⁻ ,N) $\Lambda d/\Lambda pn \leftarrow first step$ $\bar{K}NNNN$ 6 Li(K ⁻ ,d) $\Lambda t/\Lambda dn$ $\bar{K}NNNNN$ 6 Li(K ⁻ ,N) $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\bar{K}NNNNN$ 7 Li(K ⁻ ,N) $\Lambda \alpha n/\Lambda ddn$	ReactionDecays $\bar{K}N$ $d(K^{-},n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ $\bar{K}NN$ $^{3}He(K^{-},N)$ $\Lambda p/\Lambda n$ $\bar{K}NNN$ $^{4}He(K^{-},N)$ $\Lambda d/\Lambda pn \leftarrow first step$ $\bar{K}NNNN$ $^{6}Li(K^{-},d)$ $\Lambda t/\Lambda dn$ $\bar{K}NNNNN$ $^{6}Li(K^{-},N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\bar{K}NNNNN$ $^{7}Li(K^{-},N)$ $\Lambda \alpha n/\Lambda ddn$ $\bar{K}\bar{K}NN$ $\bar{p} + ^{3}He$ $\Lambda\Lambda$	$\bar{K}N$ $d(K^{-},n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ $\bar{K}NN$ $^{3}He(K^{-},N)$ $\Lambda p/\Lambda n$ $\bar{K}NNN$ $^{4}He(K^{-},N)$ $\Lambda d/\Lambda pn \leftarrow first step$ $\bar{K}NNNN$ $^{6}Li(K^{-},d)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\bar{K}NNNNNN$ $^{6}Li(K^{-},N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\bar{K}NNNNNN$ $^{7}Li(K^{-},N)$ $\Lambda \alpha n/\Lambda ddn$ $\bar{K}\bar{K}NN$ $\bar{p} + ^{3}He$ $\Lambda\Lambda$	ReactionDecays $\bar{K}N$ $d(K^{-},n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ $\bar{K}NN$ $^{3}He(K^{-},N)$ $\Lambda p/\Lambda n$ $\bar{K}NNN$ $^{4}He(K^{-},N)$ $\Lambda d/\Lambda pn \leftarrow first step$ $\bar{K}NNNN$ $^{6}Li(K^{-},d)$ $\Lambda t/\Lambda dn$ $\bar{K}NNNNN$ $^{6}Li(K^{-},N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\bar{K}NNNNN$ $^{7}Li(K^{-},N)$ $\Lambda \alpha n/\Lambda ddn$ $\bar{K}\bar{K}NN$ $\bar{p} + ^{3}He$ $\Lambda\Lambda$

Will start in FY2026

Strangeness Nuclear Physics

	HIHR	JLab	Mainz
Reaction	(π^+, K^+)	(e,e'K+)	Decay π
Achievable Precision (keV)	<mark>©</mark> <100	© <100	© <100
Applicable hypernuclei	O All Z	O Light – Medium Heavy (Larger Z, higher BG)	X Only Ground states of light hypernuclei
Availability of Neutron rich HY	OCX ^A _Λ (Z-2)	Ο ^A _Λ (Z-1)	Fragmentation only 2body-decay
Flexibility of beamtime	O Permanently Installed Beamline & Spectrometer	X Large-scale Installation (several months)	O Kaon Spectrometer Installation (a few weeks)
Absolute Energy Calibration	Δ ¹² C p(π ⁻ ,K ⁺)Σ ⁻ Decay π	$\bigotimes_{p(e,e'K^+)\Lambda,\Sigma^0}$	O Elastic e scattering
System	$(\pi+,K+): n \rightarrow \Lambda$ (e,e'K+): $p \rightarrow \Lambda$ => Inf. on CSB		

- 2-/3-body interactions via femtoscopy
- Huge data-set in Run3 (2022-25) ~
- Sensitive to S-wave (lower-mom. region)

Diquarks in Baryons

• High capabilities of hadron spectroscopy in *c*-sector, via inv. mass reconst.

K Rare Decays @ CERN

- NA62@CERN: $K^+
 ightarrow \pi^+
 u ar{
 u}$ has been investigated
 - Run1: 2016-18, Run2: 2021-24 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11} \text{ at } 68\% \text{ CL}$
- HIKE@CERN: $K^{+/0} \rightarrow \pi^{+/0} l^+ l^-$, $K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$ searches are planned as the next of NA62, but...

"In terms of their science, SHiP and HIKE/SHADOWS were ranked equally by the relevant scientific committees," explains CERN director for research and computing Joachim Mnich. "But a decision had to be made, and SHiP was a strategic choice for CERN."

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section: Overlap of wave function —>
 - charm and *q-q* (spectator)
 - Large production rate of highly excited states
 - Both one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)

One-quark process

Two-quark process

* λ -mode states w/ finite L are populated.

* Comparable ρ-mode states are expected.

 $\left| R \sim \left\langle \varphi_f \left| \sqrt{2\sigma_-} \exp(i\vec{q}_{eff}\vec{r}) \right| \varphi_i \right\rangle \right|$

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

Mom. Trans.: $q_{eff} \sim 1.4 \text{ GeV/c}$ $\alpha \sim 0.4$ GeV ([Baryon size]⁻¹)

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori PTEP 103D01 (2014).

Timeline of the Project

		1 st Year	2 nd Year	3 rd Year	4 th Year	5 th Year	6 th Year	7 th Year					
	Start of	co	construction parallel to beam operation in the first 4 years, beam-suspension in the next 2.5 years										
Hadron	budget	Th	e Extensio										
Hall	w	Curre ith SX Pow	nt Prograr /er toward	ns s 100kW		Hall	Extension		Expanded Programs				

We will soon start the project

 \rightarrow We are working on getting the timeline consistent with current programs

E34 : Muon *g*-2 / EDM

Schedule and Milestones

J-PARC PAC38, 2024 Jul

OMET Schedule

J-PARC PAC38, 2024 Jul

	2024				20	25	2026				2027	2028	2029		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Open Shield						_									
CS Inner Shield Manufacturing															
CS Inner Shield Installation															
Target Manufacturing			Fa	cilit											
Target Installation			ľч	onn											
Collimator Shield Manufacturing															
Collimator Shield Installation															
Beamline Apparatus Installation												_			
Radiation Shield Installation		_													
CS Delivery Preparation															
CS Installation								_							
CS Commissioning															
DS+BS Installation		Ma	gne	ts											
DS+BS Commissioning															
All Magnets Commissioning															
Detector Assembly + Test															
Detector Installation		De	tect	ors											
Detector Commissioning												_			
Phase-I LI Physics															
Phase-I LI Beam Measurement															
Phase-I															

Note: Mu2e's best possible plan — physic data in 2027(calendar year)

- Aggressive version of intended schedule by IPNS.
- PIP = Project Implementation Plan

subject to change

J-PARC PAC38, 2024 Jul

