Summary of the K⁻pp bound-state observation in E15 and future prospects

on behalf of the J-PARC E15/E80 collaborations

EXA2021

INTERNATIONAL CONFERENCE ON EXOTIC ATOMS AND RELATED TOPICS (EXA 2021), September 13-17, 2021, Online

Kaonic Nuclei

3 **Theoretical Calculations on "K⁻pp"** K⁻pp The simplest kaonic nuclei, $\overline{K}NN$ ($J^{P}=0^{-}$, I=1/2) Chiral SU(3) Phenomenological $\overline{K}N$ int. (energy independent) (energy dependent) $M_{\Lambda(1405)}$ ~1405, single pole $M_{\Lambda(1405)}$ ~1420, double pole $K^-p)$ [fm] NPA881{2012)98 0.5 ${\rm Re}\; f(K^-p \to$ 0 $m f(K^{-})$ -0.5 JPhys17(1991)289 1340 1360 1400 1420 1440 1340 1360 1380 1400 1420 1440 1360 1380 1400 142 Total cm. energy (MeV) 1360 1380 1400 1420 Total cm. energy (MeV) \sqrt{s} [MeV] \sqrt{s} [MeV] 200B.E. ~ 20 MeV B.E. ~ 40-70 MeV 150 Width (MeV) not compact compared compact & dense system o pheno. mod<u>els</u> 100 50 The bound state exists

60

Binding Energy (MeV)

80

100

120

0

 $\mathbf{20}$

Experimental Situation "before E15"

J-PARC E15 Experiment

³He(*in-flight* K⁻,n) reaction @ 1.0 GeV/c
 2NA and Y decays can be discriminated kinematically

Experimental Setup @ K1.8BR

Exclusive ³He(K⁻,∧p)n

Exclusive ³He(K⁻,Λp)n

Exclusive ³He(K⁻,Λp)n

Exclusive ³He(K⁻,Λp)n

- Broad Component
 - ✓ 3NA reaction?
 - ✓ Further investigations are ongoing

"K-pp" Bound State

11

→ suggest the "K⁻pp" is quite compact

Many Questions to be Answered

- Further details of the *KNN*
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
- Λ(1405) state
 - $-\overline{K}N$ quasi-bound state as considered?
 - Size?
 - Relation between $\overline{K}N$ and $\overline{K}NN$?
- More heavier kaonic nuclei?
 - Mass number dependence?
- Double kaonic nuclei?
 - Much compact and dense system?

K⁻pp

K⁻p

• More heavier system must be explored to provide more conclusive evidence of the kaonic nuclei

> The $\overline{K}NNNN$ system is expected to be the most compact system due to an α particle configuration

New Project @ J-PARC

15

-- systematic investigation of the light kaonic nuclei --

Strategy of the New Project

- for systematic study from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

	Reaction	Decays	Кеу
$\overline{K}N$	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	F-factor \rightarrow n/ γ identification
<i>K</i> NN	³ He(K⁻,N)	$\Lambda p / \Lambda n$	$J^{P} \rightarrow polarimeter$
<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance
<i>K</i> NNNN	⁶ Li(K⁻,d)	Λt/Λdn/Λpnn	many body decay
$\overline{K}\overline{K}NN$	\bar{p} + ${}^{3}He$	ΛΛ	$ar{p}$ beam yield

To realize the systematic measurements, we need

□ a large acceptance spectrometer

← new CDS detect/identify all particles to specify the reaction

high-intensity kaon beam

- more K⁻ yield than the existing beamline
- We take a **step-by-step** approach

modified K1.8BR

A New Cylindrical Detector System

A new 4π spectrometer with n/ γ detection capability

- Similar parameters obtained with the K⁻+³He→Λpn (PRC102(2020)044002.) are adopted to K⁻ppn/QF/BG shapes
- "K⁻ppn" signal [<u>q-independent</u>] will be seen clearly

- Assumption: similar parameters obtained at E15
- Mass-number dependence of the kaonic nuclei will be provided for the first time.

Summary

• We observed the "K⁻pp" bound state in ³He(K⁻, Λ p)n ✓ PLB789(2019)620., PRC102(2020)044002. J-PARC E15

- As the next step, the new project has been launched to reveal the properties of the light kaonic nuclei from the KN to KNNNN
 - a powerful probe to understand low energy QCD
 - > the best approach to cold & high-density nuclear matter
- We take a step-by-step approach:
- J-PARC E80 a $\overline{K}NNN$ search via ⁴He(K⁻,N) reactions as the first step
- J-PARC P89 a spin/parity measurement of the $\overline{K}NN$ as the second step
 - experimental challenges of $\overline{K}N$, $\overline{K}NNNN$, and $\overline{K}\overline{K}NN$ will also be followed

J-PARC E15 Collaboration

S. Ajimura^a, H. Asanoⁿ, G. Beer^b, C. Berucci^f, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomoto^o, H. Fujioka^m, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^u, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoue^a, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, K. Kanno^k, K. Kato^j, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle ^{+ p}, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishi^w, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, Y. Sada^a, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^o, A. Scordo^d, M. Sekimoto^o, H. Shi^d, K. Shirotori^a, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^u, H. Tatsuno^v, M. Tokuda^m, D. Tomono^a, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,p}, E. Widmann^f, T. Yamagaⁿ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 👀 (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy (e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 🚃 (g) INFN Sezione di Torino, Torino, Italy (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 💻 (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔎 (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan 🔎 (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 🔎 (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan 💻 (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔎 (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan 🔎 (p) Technische Universität München, D-85748, Garching, Germany 💳 (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan 👤 (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan 👤 (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💽 (u) ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan 💻 (v) Department of Chemical Physics, Lund University, Lund, 221 00, Sweden (w) Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan

J-PARC E80 Collaboration

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma^{*}, T. Yamaga RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan

K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

H. Ohnishi, Y. Sada, C. Yoshida Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan

Department of Physics, Osaka University, Osaka, 560-0043, Japan

T. Nagae Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, M. Simon, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

Thank you for your attention!

Investigation of fundamental properties of the $\overline{K}NN$ state

J-PARC P89

Internal structure & spin-parity

There are two possible J^P as for the $\bar{K}NN$ ground state.

* Positive parity state should be higher excited state if exist.

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

How to determine J^P

– Λp spin-spin correlation ($\alpha_{\Lambda p}$) in $K^-pp \rightarrow \Lambda p$ decay – $J^{P} = 0^{-1}$ To make negative parity from Λp To make negative parity from Λp $L_{\Lambda p} = 1$ $L_{\Lambda n} =$ To be J = 0To be J = $S_{\Lambda p} =$ BR = 1/3BR = 2/3+ $\alpha_{\Lambda p} = +$ + $\alpha_{\Lambda n}$ Spin paralle Spin anti-parallel Spin parallel We can deduce J^P from $\alpha_{\Lambda p}$ measurement.

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

J-PARC P89

How to measure spin-spin correlation

– Spin alignment measurement by $\Lambda \to p\pi^- \& p$ -C scattering –

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

Cylindrical detector system

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

Expected spectra

– To measure $\phi_{\Lambda p}$ -asymmetry for J^P determination –

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

Expected spectra

– To measure $\phi_{\Lambda p}$ -asymmetry for J^P determination –

T. Yamaga (RIKEN), 32nd J-PARC PAC meeting, Jul.14-16, https://kds.kek.jp/event/38719/

Size of "K⁻pp"?

Fit with PWIA $\sigma(M,q) \propto \rho(M,q) \times \frac{(\Gamma_{Kpp}/2)^2}{(M-M_{Kpp})^2 + (\Gamma_{Kpp}/2)^2} \times exp\left(-\frac{q^2}{Q_{Kpp}^2}\right)$

A Theoretical Interpretation

• A calculation with chiral unitary approach reproduces the mass spectrum with the $\overline{K}NN$

Many Questions to be Answered

- Further details of the $\overline{K}NN$
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
 - Other decay modes?

• $\pi\Sigma N$ mesonic decay

- expected to be the dominant channel
 - only YN non-mesonic decays were reported

Reaction mechanism

- relation between $\Lambda(1405)=$ "K⁻p" & "K⁻pp"
 - "K⁻pp" is expected to be produced via Λ(1405)+p→"K⁻ pp" door-way process

K^{-3} He → πΣpn @ E15

CDS

Experimental challenge of neutron detection with thin scintillation counter (t=3cm)

n detection efficiency ~ 3-10%

$\pi\Sigma pn$ Events

BG Subtracted IM($\pi^{\pm}\Sigma^{\mp}$) in $\pi^{\pm}\Sigma^{\mp}pn$

Y^{*}*pn* Final State

$\Lambda(1405)pn$ Final State Selection

- IM(Λ (1405)p) distributes above the M(Kpp)
- QF K-N \rightarrow K^{bar}n followed by K^{bar}NN \rightarrow Λ (1405)p

Investigation of K⁻pp $\rightarrow \pi\Sigma$ p decay

Detector acceptances of Λpn and $\pi \Sigma pn$

 In the E15 analysis so far, we assumed a pointlike 3NA process for the background to explain the IM(Λp) spectrum, by parametrizing a fitting function

For the K⁻pp and QF, we assume the following processes

 On the other hand, "p" and "n" can be swapped in the reactions when the isospin partner of the K⁻pp (=K⁰nn) is also generated

• IM(Λ p) and IM(Λ n)

> Acceptances are quite different between the " Λ p" and " Λ n" > In IM(Λ n), a forward going proton is out of the acceptance

- Both of IM(Λp) and IM(Λn) can be reproduced by the "signal" and "QFs"
 - Eye fit results \rightarrow further analysis is on going

Σ^*N bound state? Other possibilities?

$$\Sigma(1385) 3/2^+$$
 $I(J^P) = 1(\frac{3}{2}^+)$
 $\Sigma(1385) DECAY MODES$
 Fraction (Γ_i/Γ)
 $\Lambda \pi$
 (87.0 ± 1.5)%

 $\Sigma \pi$
 (11.7 ± 1.5)%

- Σ* coupling through K^{bar}-N channel (P-wave) would be weak
 ✓ A.Cieply et al., PRC84(2011)045206, etc.
- Naively, Σ*N system with 1⁺/2⁺ state (S-wave) could not be bound, because corresponding ΔN system (non-strangeness sector) is considered to be no-bound or quite-weakly bound
 - ✓ R. D. Mota et al., PRC59(1999)46, etc.

need J^P determination with a polarimeter

- The K^{bar}NN state (I=1/2, J^P=0⁻) is calculated with a K^{bar}NN N N N coupled channel system, where the
 N coupling is expected to be small
- The K^{bar}NN state with J^P=1⁻ (K^{bar}-d like configuration) is expected to not be bound, or have small B.E.

✓ S.Ohnishi et al., PRC95(2017)065202, etc.

Σ^*N bound state? Other possibilities?

• One theoretical possibility is a " $\pi\Lambda N$ - $\pi\Sigma N$ dibaryon"

Nuclear Physics A 897 (2013) 167–178

Relativistic three-body calculations of a Y = 1, $I = \frac{3}{2}$, $J^P = 2^+ \pi \Lambda N - \pi \Sigma N$ dibaryon

H. Garcilazo^a, A. Gal^{b,*}

- Calculated $\pi \Lambda N$ resonance with $\Sigma^* N \Delta \Sigma$ configuration is:
 - − I=1/2, J^P=2⁺ : **E** = -10-i52 MeV

- I=3/2, J^P=2⁺ : E = -120-i2.6 MeV with respect to M(K^{bar}NN)

- The obtained K⁻pp parameter at E15 is **E=-40-i50 MeV**
- Therefore, the "observed K-pp structure" would be different from the " $\pi\Lambda N$ - $\pi\Sigma N$ dibaryon"

"K⁻ppn" Candidates so far

51

M_{inv}(GeV)

^{closeup} ⁴He(stopped-K⁻,p/n)X A few candidates have been reported in *inclusive* PLB659(2008)107, PLB688(2010)43 measurements 3050 3100 0.2 - ⁴He(stopped-K⁻,p/n)X 3000 3050 3100 3150 3200 3000 M (MeV/c² Missing Mass (MeV/c²) Li/C(stopped-K⁻,∧d) FINUDA@DAΦNE **Observed?** Units - Li/C(stopped-K⁻, Λd 0.8 (Arb 0.6FOPI@GSI ← Observed? dn/dm_{Ad} 0.4 1.0 -0.50.0 $-\Lambda d$ in Ni+Ni cos 0.2 .B654(2007)80 0.0 3100 3200. 3300 3000. **Exclusive measurement** $m_{\Lambda d}$ (MeV/c²) using a simple reaction 4000 $152.5 \pm$ ∧ don haveN i + N P2 $3.159 \pm$ 0.1392E-01 3000 (in-flight & light nuclei) is EXA05 Conference (2005) 2000 crucia 1000 3.2 3.4 3.8 3.2 3.6 3 3.4 3.6 3.8

M_{inv}(GeV)

A New Cylindrical Detector System

- Cylindrical Drift Chamber
- Neutron Counter
- FWD/BWD Drift Chambers
- Vertex Fiber Tracker
- Electromagnetic Calorimeter (constructed in 2nd-stage)

Solid angle: ~x1.5 (~90%)

Neutron detection capability: ~x10 (~1.5x15%)

Improvement of Kaon Intensity

- We propose a new configuration of the beamline
 - K- yield is expected to increase by ~ 1.4 times @ 1.0 GeV/c

Expected Yield of $\overline{K}NNN$

$$\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$$

We assume the K⁻ppn cross
section of
$$\sigma(K^-ppn) \cdot Br(\Lambda d) \sim 10 \ \mu b$$

 $\sigma(K^-ppn) \cdot Br(\Lambda pn) \sim 10 \ \mu b$

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$

The same CS of "K-pp" → Λp in E15
 As for Λd decay, we refer to the absorption of stopped K⁻ on ⁴He
 → decay fraction to Σ⁻pd : Σ⁻ppn ~ 1 : 1

absorption of stopped K⁻ on ⁴He

Reaction	(%)
$K^{-}\text{He}^{4} \rightarrow \Sigma^{+}\pi^{-}\text{H}^{3}$ $\rightarrow \Sigma^{+}\pi^{-}dn$ $\rightarrow \Sigma^{+}\pi^{-}pnn$ $\rightarrow \Sigma^{+}\pi^{0}nnn$ $\rightarrow \Sigma^{+} nnn$ $\text{Total } \Sigma^{+} = (17.0 \pm 2.7)$	9.3 \pm 2.3 1.9 \pm 0.7 1.6 \pm 0.6 3.2 \pm 1.0 1.0 \pm 0.4
$K^{-}\text{He}^{4} \rightarrow \Sigma^{-}\pi^{+}\text{H}^{3}$ $\rightarrow \Sigma^{-}\pi^{+}dn$ $\rightarrow \Sigma^{-}\pi^{0}pnn$ $\rightarrow \Sigma^{-}\pi^{0} \text{He}^{3}$ $\rightarrow \Sigma^{-}\pi^{0} pd$ $\rightarrow \Sigma^{-}\pi^{0} pd$ $\rightarrow \Sigma^{-} pd$ $\rightarrow \Sigma^{-} pdn$ $Total \Sigma^{-} = (13.8 \pm 1.8)$	$\begin{array}{c} 4.2 \pm 1.2 \\ 1.6 \pm 0.6 \\ 1.4 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.4 \\ 1.6 \pm 0.6 \\ 2.0 \pm 0.7 \end{array}$
$K^{-}\text{He}^{4} \rightarrow \pi^{-}\Lambda \text{ He}^{3}$ $\rightarrow \pi^{-}\Lambda pd$ $\rightarrow \pi^{-}\Lambda ppn$ $\rightarrow \pi^{-}\Sigma^{0} \text{ He}^{3}$ $\rightarrow \pi^{-}\Sigma^{0} (pd,ppn)$ $\rightarrow \pi^{0}\Lambda (\Sigma^{0}) (pnn)$ $\rightarrow \Lambda (\Sigma^{0}) (pnn)$ $\rightarrow \pi^{+}\Lambda (\Sigma^{0})nnn$ $\text{Total }\Lambda (\Sigma^{0}) = (69.2\pm6.$ $\text{Total} = \Lambda + \Sigma = (100 \ r^{+0})^{0/2}$	$11.2\pm2.7 \\ 10.9\pm2.6 \\ 9.5\pm2.4 \\ 0.9\pm0.6 \\ 0.3\pm0.3 \\ 22.5\pm4.2 \\ 11.7\pm2.4 \\ 2.1\pm0.7 \\ 6)\%$

PRD1(1970)1267

Expected Yield of $\overline{K}NNN$

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$

 $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

- N_{beam} = 100 G K- on target

 under the MR beam power of 90
 kW with 5.2 s repetition cycle.
 - 3.2 x 10⁵ K- on target / spill @ 1.0 GeV/c
 around 2024
 - **3 weeks** data taking (90% up-
- N(K^{time)}→Ad) ~ 2 x 10⁴
- N(K⁻ppn→Λpn) ~ 3 x 10³
 - c.f. 1.7 x 10³ "K⁻pp" → Λp accumulated in E15-2nd (40 G K⁻)

	Λd / Λpn
ਰ(K⁻ppn)*Br	10 µb
N(K ⁻ on target)	100 G
N(target)	2.65 x 10 ²³
ε(DAQ)	0.9
ε(trigger)	0.93
ε(beam)	0.55
Ω(CDC)	0.27 / 0.077
ε(CDC)	0.6 / 0.3
N(K ⁻ ppn)	19 k / 2.8 k

* improved from E15

Spin-Parity of *KNN*

T.Nagae, "The 4th Symposium on Clustering as a window on the hierarchical structure of quantum systems", May 28th, 2020

Spin-Parity of *KNN*

- Proton polarization is measured with a polarimeter
 - Tracking system
 - Plastic scintillator

We also wish to access the S

 –2 kaonic nuclei such as
 the theoretically predicted
 "K⁻K⁻pp" state

✓ as previously submitted LoI ✓ A good probe to the $\overline{K}N$ int.

 The K̄KNN system could give us a chance to access much higher density than the S = −1 kaonic nuclei

The $\overline{K}\overline{K}NN$ production cross section would be quite small \rightarrow roughly 1/1000 of that of the $\overline{K}NN$