kaon-nucleus bound systems

-from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

the J-PARC E15/E73/T77/E80/P89 collaboration

研究会「EICで展開する新たな原子核・素粒子物理」28-30 May 2024 東京大学

What is "Kaonic Nuclei"?

• Kaonic nuclei = anti-kaon – nucleus bound states

✓ Predicted from attractive $\overline{K}N$ interaction in I=0 channel

$$\mathbf{K} = \begin{pmatrix} \mathbf{K}^{+} \\ \mathbf{K}^{0} \end{pmatrix} \overset{\mathbf{u}\overline{\mathbf{S}}}{\mathbf{d}\overline{\mathbf{S}}} \mathbf{s} = \mathbf{1} \left\{ \begin{bmatrix} \overline{\mathbf{K}}^{0} \\ \mathbf{K}^{-} \end{pmatrix} \overset{\overline{\mathbf{d}}\mathbf{s}}{\mathbf{u}\mathbf{s}} \mathbf{s} = -\mathbf{1} \quad \mathbf{N} = \begin{pmatrix} \mathbf{p} \\ \mathbf{n} \end{pmatrix} \overset{\mathbf{u}\mathbf{d}}{\mathbf{u}\mathbf{d}} \right\} \quad \mathbf{I}_{3} = \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$$

What is Interesting about "Kaonic Nuclei"?

- Meson can be the building block of nuclei → New forms of nuclei
 - *cf.,* "virtual" light mesons play an important role in a nucleus as "glue"

 \overline{K} = "real" particle π = "virtual" particle (Force Mediating Particle)

- - large binding energies are expected compared to normal nuclei

Nuclear & Hadron Physics

= Study of <u>quantum many-body system</u> governed by QCD

The ultimate goal: to reveal formation and evolution of matter based on QCD, widely ranging from quarks to neutron stars

"Kaonic Nuclei" Cover Broad Subjects through \overline{KN} interaction in media

"K⁻pp" Bound State Searches - History

Hadron Experimental Facility (HEF)

Hadron Experimental Facility (HEF)

Experimental Setup @ K1.8B K.Agari et, al., PTEP(2021)02B011 Beam Dump

Beam Sweeping Magnet

K.pt

3He

NC format.

CDS

Missing mass spectroscopy

Invariant mass

spectroscopy

1GeV/c

K⁻ beam

Liquid ³He-target System

Cylindrica Detector System

Beam Line pectrometer

Neutron Counter Charge Veto Counter Proton Counter

missing

"K⁻pp" Search w/ Momentum Transfer Analysis

"K⁻pp" Search w/ Momentum Transfer Analysis

 $K - \frac{p_{K}}{p_{K}}^{3He}$ I GeV/c Q Kn $X - \frac{q_{Kn}}{p_{K}}^{3He}$

 Momentum transfer analysis using the (K⁻,n) reaction

✓ M(Λp) vs. q
 ✓ give a clear information on reaction processes

13

A peak structure independent of *q* = A bound state exists

"K⁻pp" Search w/ Momentum Transfer Analysis Quasi-free K⁻ scattering

 Momentum transfer analysis using the (K⁻,n) reaction

✓ M(Λp) vs. q
 ✓ give a clear information on reaction processes

14

A peak structure independent of *q* = A bound state exists

A PWIA-based Interpretation

Deep binding = Strong K^{bar}N int. B_{Kpp}(BW) ~ 40 MeV, $\Gamma_{Kpp}(BW)$ ~ 100 MeV

Binding energy

Decay width

Large Q = Suggest a compact system $Q_{knn} \sim 400 \text{ MeV}$ 15

Form factor

A Theoretical Interpretation

16

A calculation based on chiral unitary approach reproduces the data well using the $\overline{K}NN$ bound state

What We Observed at E15 [Discussion]

Low momentum \overline{K}

 \checkmark A peak structure below the mass threshold M(Kpp) that does NOT depend on momentum transfer

> A bound state exists

➤~10 times the binding energy of normal light nuclei

➤Generated by large momentum transfer

 \checkmark Evidence of quasi-free K⁻ scattering \triangleright An intermediate \overline{K} exists during the reaction

Consistent with a theoretical calculation using "K-pp"

Need Further Investigations

to establish the kaonic nuclei

- Λ(1<u>4</u>05) state
 - $-\overline{K}N$ qusi-bound state as considered?
 - Relation between $\overline{K}N$ and $\overline{K}NN$?
- Further details of the $\overline{K}NN$
 - Mesonic decay modes?
 - Spin and parity of the "K⁻pp"?
 - Really compact and dense system?
- Heavier kaonic nuclei
 - Mass number dependence?
- Double kaonic nuclei
 - Much compact and dense system?

K⁻K⁻pp

Mass Number Dependence of Kaonic Nuclei

 Systematic measurements will provide more conclusive evidence of the kaonic nuclei AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001. BGL: PLB712(2012)132. OHHMH: PRC95(2017)065202. Kanada: EPJA57(2021)185.

- \bullet An analysis of the Λdn final state with K⁻⁴He reaction at 1 GeV/c has been conducted
 - > T77: lifetime measurement of ${}^{4}_{\Lambda}$ H in 2020
- The results will be updated with a part of the E73 controlled data
 - > E73: lifetime measurement of ${}^{3}_{\Lambda}$ H in 2024 (*now in beam time!*)

- Two distributions are quite similar
- structure below the threshold (seems q-independent), QF-K, BG

What is the observed structure? [Discussion]

- 1. "X" $\rightarrow \Lambda d$ decay mode is unique evidence of $I_{x_{x'}} = 0$
 - $I(J^P): \Lambda = O(1/2^+), d = O(1^+), K^- = 1/2(0^-), {}^{3}He = 1/2(1/2^+), {}^{4}He = O(0^+)$
- "X"="K-ppn" with J_{"X"} = 1/2 would be likely, considering the isospin and spin combination in S-wave interaction
 - J_{"x"} = 1/2: ⁴He initial state is I(J) = 0(0) and low-momentum intermediate K would react with remaining NNN [I(J) = 1/2(1/2)] in S-wave
 - Exclusion of Y*(I=1)NN: probability of "X"→Ad decay would be suppressed because spin/isospin flip is needed to reconfigure NN [I(J) = 1(0)] into deuteron [I(J) = 0(1)]
 - \succ Apn decay would be dominant

What is the observed structure? [Discussion]

• The binding energy is compatible with some theoretical predictions

• The width is larger than theoretical predictions

New Kaonic Nuclei Project at J-PARC

-from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

Strategy

	Reaction	Decays	Key	Experiment		
$\overline{K}N$	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	n/ γ identification	Future		
<i>K</i> NN	³ He(K⁻,N)	Λ p/ Λ n	polarimeter	P89		
<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance	E80 ← A first	step	
<i>K</i> NNNN	⁶ Li(K⁻,d)	Λ t/ Λ dn	many body decay	Future		
<i>K</i> NNNNN	⁶ Li(K⁻,N)	$\Lambda \alpha / \Lambda dd / \Lambda dpn$	many body decay	Future		
<i>K</i> NNNNNN	⁷ Li(K⁻,N)	$\Lambda lpha$ n/ Λ ddn	many body decay	Future		
<i>KK</i><i>NN</i>	\bar{p} + ${}^{3}He$	ΛΛ	$ar{p}$ beam yield	Future (Lol)		
To realize the systematic measurements, we need						
	KNKNNKNNNKNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNNKNNNNN	$\bar{K}N$ Reaction $\bar{K}N$ $d(K^-,n)$ $\bar{K}NN$ $^3He(K^-,N)$ $\bar{K}NNN$ $^4He(K^-,N)$ $\bar{K}NNNN$ $^6Li(K^-,d)$ $\bar{K}NNNNN$ $^6Li(K^-,N)$ $\bar{K}NNNNN$ $^7Li(K^-,N)$ $\bar{K}\bar{K}NN$ $\bar{p} + ^3He$ $\bar{K}RNN$ $\bar{p} + ^3He$	ReactionDecays $\overline{K}N$ $d(K^{-},n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ $\overline{K}NN$ $^{3}He(K^{-},N)$ $\Lambda p/\Lambda n$ $\overline{K}NNN$ $^{4}He(K^{-},N)$ $\Lambda d/\Lambda pn$ $\overline{K}NNNN$ $^{6}Li(K^{-},d)$ $\Lambda t/\Lambda dn$ $\overline{K}NNNNN$ $^{6}Li(K^{-},N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ $\overline{K}NNNNN$ $^{7}Li(K^{-},N)$ $\Lambda \alpha n/\Lambda ddn$ $\overline{K}\overline{K}NN$ $\overline{p} + {}^{3}He$ $\Lambda\Lambda$	ReactionDecaysKey $\overline{K}N$ $d(K^-,n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ n/γ identification $\overline{K}NN$ $^3He(K^-,N)$ $\Lambda p/\Lambda n$ polarimeter $\overline{K}NNN$ $^4He(K^-,N)$ $\Lambda d/\Lambda pn$ large acceptance $\overline{K}NNNN$ $^6Li(K^-,d)$ $\Lambda t/\Lambda dn$ many body decay $\overline{K}NNNNN$ $^6Li(K^-,N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ many body decay $\overline{K}NNNNN$ $^7Li(K^-,N)$ $\Lambda \alpha n/\Lambda ddn$ many body decay $\overline{K}\overline{K}NN$ $\overline{p} + ^3He$ $\Lambda\Lambda$ \overline{p} beam yield \overline{p} beam yield \overline{p} \overline{p}	ReactionDecaysKeyExperiment $\overline{K}N$ $d(K^{-},n)$ $\pi^{\pm 0}\Sigma^{\mp 0}$ n/γ identificationFuture $\overline{K}NN$ $^{3}He(K^{-},N)$ $\Lambda p/\Lambda n$ polarimeterP89 $\overline{K}NNN$ $^{4}He(K^{-},N)$ $\Lambda d/\Lambda pn$ large acceptanceE80 $\leftarrow A$ first $\overline{K}NNNN$ $^{6}Li(K^{-},d)$ $\Lambda t/\Lambda dn$ many body decayFuture $\overline{K}NNNNN$ $^{6}Li(K^{-},N)$ $\Lambda \alpha/\Lambda dd/\Lambda dpn$ many body decayFuture $\overline{K}NNNNN$ $^{7}Li(K^{-},N)$ $\Lambda \alpha n/\Lambda ddn$ many body decayFuture $\overline{K}\overline{K}NN$ $\overline{p} + ^{3}He$ $\Lambda\Lambda$ \overline{p} beam yieldFuture (Lol)Future ture ture ture to the systematic measurements, we need	

□ a large acceptance spectrometer ← new CDS

- detect/identify all particles to specify the reaction
- □ high-intensity kaon beam ← improved K1.8BR
 - more K⁻ yield than the existing beamline

We take a step-by-step approach

KNNN **@ E80** via ⁴He(1 GeV/c K⁻, n) reaction

- ① Establish the existence of $\overline{K}NNN$ ≻ "K-ppn" → Ad 2-body decay
- ② Study the multi-particle decay mode of KNNN toward understanding its internal structure
 > "K-ppn" → Apn 3-body decay
- Feasibility study of spin-spin correlation measurement for P89

➤ e.g., installing a prototype module of a polarimeter

Beam intensity	90kW
Beam time	1+1+3 weeks

New Cylindrical Detector System (CDS)

Summary

- ●We observed the "K⁻pp" bound state in ³He(K⁻, Λp)n
 ✓ PLB789(2019)620., PRC102(2020)044002.
- ●We also obtained hints of mesonic decays of "K-pp" ✓arXiv:2404.01773 [nucl-ex]
- We observed the sign of the "K⁻ppn" in ⁴He(K⁻, ∧d)n
 ✓ will be published soon with twice statistics
- New project has started from E80, "K⁻ppn", aiming at the systematic study of the kaonic nuclei
 - Constructing a large solenoid spectrometer
 - Modify the K1.8BR BL to improve kaon yield
 - Data taking will start in FY2026-27

J-PARC E80 Collaboration

K. Itahashi, M. Iwasaki, T. Hashimoto, Y. Ma, R. Murayama, T. Nanamura, F. Sakuma^{*} RIKEN. Saitama, 351-0198, Japan

T. Akaishi, K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

Y. Kimura, G. Kojima, H. Ohnishi, K. Toho, M. Tsuruta Research Center for Accelerator and Radioisotope Science (RARIS), Tohoku University, Sendai, 982-0826, Japan

M. Iio, S. Ishimoto, Y. Makida, H. Ohhata, M. Oonaka, K. Ozawa, K. Sasaki, N. Sumi, S. Suzuki, T. Yamaga, M. Yoshida ara do 5 0801, Japan High Ener Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

> S. Okada Chubu University, Aichi, 487-0027, Japan

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, S. Manti, A. Scordo, F. Sgaramella, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

New era of kaonic nuclei

Thank you for your attention!

A first step of the project

