4.J-PARC紹介

4.J-PARC紹介:内容

- J-PARCについて
- J-PARCでの実験
 - -物質生命科学
 - 素粒子原子核物理
 ① ニュートリノ実験(T2K)
 ② ハドロンホールでの実験

J-PARCについて

J-PARCイメージキャラクター 陽子のP君

高エネルギー加速器研究機構 (KEK) と日本原 子力研究開発機構 (JAEA)の共同事業 8年の歳月と総工費1524億円をかけ、2008年に 第一期施設が完成

•

•

茨城県東海村に建設

J-PARC = Japan Proton Accelerator Research Complex

J-PARCの特色

- 典型的な多段複合加速器
 LINAC(400MeV) → RCS(3eV) → MR(50GeV)
- 各加速器ごとに多目的に利用可能
 - LINAC(核変換等)、RCS(nとμ)、MR(vとハドロン) - 原子力・物質生命科学・素粒子原子核物理学
- 大強度加速器
 - 予定では
 - RCS ~ 1MW
 - MR ~ 750kW

- 20世紀の最先端 は0.1MW
- 21世紀は1MWの
 時代
- J-PARCはこれまでの加速器10台分の強度を目指す!

強度(W)について

- 例えば50GeVで750kWとは
 - $-1 \text{ eV} = 1.6*10^{-19} \text{ J} \rightarrow 50 \text{ GeV} = 8*10^{-9} \text{ J}$
 - -W = J/s \rightarrow 750 kW = 750*10³ J/s
 - 1秒間あたりの陽子数で 750*10³/ 8*10⁻⁹ = 9.4*10¹³ ~ 10¹⁴ proton/s
 - 電流にして

 $9.4*10^{13} * 1.6*10^{-19} = 1.5*10^{-5} \text{ A} = 15 \mu \text{ A}$

- 30GeV, 9µA = 270kW
- 30GeV, 25µA = 750kW

現在の状況

11

2次ビームとして利用

LINIAC

- 最大50Hzの繰り返しでパルス運転され、 400MeVまで加速 (現在は181MeV運転)
 - 半分(25Hz)がRCSへ入射 < MLF/v/ハドロン
 - •半分(25Hz)が更に加速する超伝導リニアックビームラ イン(600MeV予定)へ く 核変換実験

RCS (Rapid-Cycling Synchrotron)

- 400MeV → 3GeVへ加速 (~20ms)
- 25Hzでの加速が可能 (Rapid-Cycling)
- 最大1MW(3GeV, 333uA)の世界一強力な加速器となる予定
 - MLFへ入射するメイン加速器
 - MRへ入射する前段加速器

MR (Main Ring)

- 3GeV → 50GeVへ加速 (~2s)
 - 現在は30GeV運転
 - 50GeVにするには磁石、電気代(4倍!)がネック
- ・ビームの取り出し方は2種類
 - 早い取り出し(fast extraction, FX) ← v実験
 - 遅い取り出し(slow extraction, SX) ~ ハドロン実験

RCS→MRへのビームの受け渡し

- 陽子は高周波電場が作る安定領域(バケツ)の中でバンチと呼ばれるひと塊の集団となって加速される
 - RCSは2箇所のバケツを持ち、同時に2バンチまで加速
 - MRは9箇所のバケツを持ち、RCSから2バンチずつ4回 受け取って、同時に8個のバンチを加速可能

MRからのビーム取りだし

早い取り出し(FX)

- ビームを一度に放出

- 取り出し時間は周回時間で ある約5マイクロ秒程度

– v実験で利用

遅い取り出し(SX)
 ビームを少しずつ放出
 取り出し時間は約2秒間
 ハドロン実験で利用

J-PARCでの実験 ----物質生命科学 ----

MLF (Material and Life science experimental Facility)

・中性子、ミューオンを用いた物性実験が行われている

ミュオン実験施設

- π⁺⁽⁻⁾ → μ⁺⁽⁻⁾ν_μ(ν_μ)崩壊
 からのμを利用
 - π(spin=0), μ/ν(spin=1/2)より、 μは自然に偏極
 - スピン保存則&弱い相互作用 より(v:負ヘリシティ)

g-2実験 (とEDM実験)

- ミューオンの異常磁気能率(a)の精密測定実験
 - ディラック方程式ではg=2
 - AGS-E821実験の結果は、異常磁気能率a=(g-2)/2が標準 理論予想より3σ以上ずれている
 - もし本当ならば、標準理論を越える何かがあるはず

磁気モーメント:
$$\mu = g \frac{e}{2m} s$$

 $a = \frac{g-2}{2} = \frac{1}{2} \left(\frac{\alpha}{\pi}\right) - 0.3248 \left(\frac{\alpha}{\pi}\right)^2 + \dots$
QED補正

$$\Delta a_{\mu}^{(\text{today})} = a_{\mu}^{(\text{Exp})} - a_{\mu}^{(\text{SM})} = (295 \pm 88) \times 10^{-11}$$

J-PARCでの実験 --- 素粒子原子核物理 ---

① ニュートリノ実験(T2K)

現在分かっている素粒子

太陽ニュートリノ問題

- 太陽内部の核融合反応に伴って、 太陽からはニュートリノが常時放出
 $-4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e}$
- 1960年代後半、アメリカのR.DavisらによるHomestake実験で太陽からのニュートリノを観測
 - 太陽モデルから予想される30%程度し か観測できなかった →「太陽ニュート リノ問題」
- 2001年、スーパーカミオカンデ(と SNO)により、「ニュートリノ振動」とし て解決

- 1998年、スーパーカミオカンデによる大気
 ニュートリノの観測により、ニュートリノが飛行
 - する間にその種類が変化する現象(ニュートリノ 振動)を発見
- ニュートリノが質量を持つことの証拠!
- 岐阜県神岡鉱山内の 地下1000メートル
- 5万トンの純水
- 11,200本の20インチ PMT

どうやってSKでニュートリノを観測する?

運動学変数がわかるCharged Current Quasi Elastic (CCQE) 反応が一番重要

(KEK 田中さんのスライド)

史上初の長基線実験: K2K

K2K(KEK to Kamioka)実験

ニュートリノビームの作り方

- $\pi^+ \rightarrow \mu^+ \nu_\mu$ 崩壊を利用
- 1次ビームを標的に当ててπを生成
- πをホーンで収束して崩壊領域に入射
- 崩壊領域でvビームに

Inner conductor paraboloid of revolution

Outer conductor cylinder

It was found the combination of two of such a lens produces the

Historically the first lens is referred second as Reflector.

	K2K	T2K
ホーン	2	3
崩壊領域	200m	96m

To create a strong magnetic field the Horn and Reflector currents should be high:

I(Horn) = 150 kA, I(Reflector)=180kA

KEKからのニュートリノ識別法

>シグナル - KEKからのニュートリノ ▶ バックグラウンド - 大気ニュートリノ、太陽ニュートリ ノ、宇宙線ミューオン、岩盤中のラドンの放射能など

- ニュートリノは2秒に1回、1.1µsの 間だけ発射
 - つくばー神岡間(250km)のニュート リノの飛行時間は0.83ms
- GPS衛星からのクロック(1GHz強) を利用し、1.5µsのタイミングウイ ンドウでKEKからのニュートリノを 識別

Timing distribution using GPS

K2K実験最終結果

K2KからT2Kへ

(1)3世代間でのニュートリノ混合の研究 - K2Kで $\nu_{\mu} \rightarrow \nu_{\tau}$ 振動(消滅)が分かった - T2Kでは $\nu_{\mu} \rightarrow \nu_{e}$ 振動(出現)を目指す (2) ニュートリノの質量研究 – ニュートリノ振動 = 有限の質量 - ニュートリノの質量階層は? ③ニュートリノを用いたCP対称性の破れ研究 - K/D/B中間子等ではよく知られているがニュートリ ノでは未だ調べられていない

T2K(Tokai to Kamioka)実験

最新結果(2012年5月までのデータ)

- 11のv_eイベント候補を観測
- θ₁₃=0である(振動しない)確
 率は0.08% = 3.2σ

 $-\nu_{\mu}
ightarrow \nu_{e}$ 振動の証拠!

• $\sin^2(2\theta_{13}) = 0.094^{+0.053}_{-0.040}$

(2012/July/5, ICHEP 2012)

5σを越えるべく現在もデータを蓄積中

世界の動向

- 原子炉実験
 - - 原子炉からのν_e消滅測定から、θ₁₃の精密な結果を出し初めている
 - Double-Chooz@フランス、Daya-Bay@中国、Reno@韓国、等
- 長基線実験
 - K2Kを先駆けとして、現在世界各地で熾烈な競争 - 現在はv。出現測定が主な目的
 - T2K(2010~)、NOVA@FNAL(2013~)、MINOS@FNAL(2005~)、等
 次はニュートリノを用いたCP破れ測定が目標

J-PARCでの実験 --- 素粒子原子核物理 ---

② ハドロンホールでの実験

ハドロン

- 中間子(メソン)
 クォーク・反クォーク対から構成
 スピンが整数のボース粒子
- ・ バリオン

 3つのクォークから構成
 スピンが半整数のフェルミ粒子
- テトラクォーク?
 4つのクォークから構成
- ペンタクオーク?
 5つのクォークから構成
- ダイバリオン?
 6つのクォークから構成

"Sクォーク"を含むバリオン
= ハイペロン
"ハイペロン"を含む原子核
= ハイパー核

ハドロン物理とは

ハドロン物理とは

ハドロンホールでの実験(一部)

				i i i i i i i i i i i i i i i i i i i	Slow line priority			from 2012	
	(Co-)Spokespersons	Affiliation	Title of the experiment	Approval status (PAC recommendation)	Day1?	Day1 Priority	Beamline	Leading Referees	
E03	K.Tanida	SNU	Measurement of X rays from g -Atom	Stage 2			К1.8	Weise, Kishimoto, Nagae, Shimizu	
P04	J.C.Peng; S.Sawada	U of Illinois at Urbana- Champaign; KEK	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	Deferred			Primary	Nagae, Gross-Pendekamp, Imai, Dote	
EOS	T.Nagae	Kyoto U	Spectroscopic Study of B Hypernucleus, ¹² ,Be, via the ¹² C(K', K') Reaction	Stage 2	Day1	1	К1.8	Welse, Shimizu, Sakural	
£06	J.Imazato	KEK	Measurement of T-violating Transverse Muon Polarization in K* $\rightarrow \pi^0 \mu^+ \nu$ Decays	Stage 1			K1.1BR	Browder, Blucher, Kleinknecht, Isidori	
E07	K.Imal, K.Nakazawa, H.Tamura	JAEA, Gifu U, Tohoku U	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 2			К1.8	Weise, Shimizu, Kishimoto	
EO8	A.Krutenkova	ITEP	Plon double charge exchange on oxygen at J-PARC	Stage 1		К1.8		Dote, Nagae, Imai	
E10	A. Sakaguchi, T. Fukuda	Osaka U, Osaka EC U	Production of Neutron-Rich Lambda-Hypernuclei with the Double Charge-Exchange Reaction (Revised from Initial P10)	Stage 2		К1.8		Weise, Nagae, Kishimoto	
E11	T. Kobayashi	KEK	Tokal-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2		neutrino		Louis, Blucher, Inoue, Isidori	
E13	H.Tamura	Tohoku U	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Day1	2	К1.8	Weise, Shimizu, Kishimoto	
E14	T.Yamanaka	Osaka U	Proposal for $K_L \rightarrow \pi^0 v v$ -bar Experiment at J-PARC	Stage 2			KL	Imai, Blucher, Browder, Kleinknacht, Isidori	
E15	M.Iwasaki, T.Nagae	RIKEN, Kyoto U	A Search for deeply-bound kaonic nuclear states by in-flight $3\text{He}(K_{\gamma},n)$ reaction	Stage Z	Day1		K1.8BR	Imai, Dote, Sakurai, Kishimoto	
E16	S.Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Stage 1			High p	Weise, Nagae, Gross-Perdekamp, Shimizu	
E17	R.Hayano, H.Outa	U Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 2	Day1		K1.8BR	Imai, Dote, Sakurai, Kishimoto	
E18	H.Bhang, H.Outa, H.Park	SNU, RIKEN, KRISS	Coincidence Measurement of the Weak Decay of ¹² C and the three-body weak interaction process	Stage 2	К1.8		К1.8	Weise, Kishimoto, Imai	
E19	M.Naruki	кек	High-resolution Search for Θ^* Pentaquark in $\pi \mathbf{\hat{p}} \to K X$ Reactions	Stage 2	Day1 K1.4		К1.8	Sakural, Dote, Nagae	
E21	Y.Kuno	Osaka U	An Experimental Search for μ – e Conversion at a Sensitivity of 10^{-15} with a Slow-Extracted Bunched Beam	Stage 1	New bear		New beamline	Louis, Welse, Inoue, Kleinknecht, Bowder, Isidori	
E22	S. Ajimura, A. Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Interaction in A=4 Lambda-Hypernuclei (Revised from Initial P10)	Stage 1	к1.		К1.8	Weise, Imai, Kishimoto	
T25	S.Mihara	КЕК	Extinction Measurement of J-PARC Proton Beam at K1.8BR	Test Experiment	will be coordinated by JPNC		K1.8BR		
E26	K.Ozawa	KEK	modification in the in-medium $\omega > \pi^0 \gamma$ decay.	Stage 1			к1.8	Dote, Sakurai, Nagae	
E27	T.Nagas	Kyoto U	Search for a nuclear Kbar bound state K pp in the $d(\pi^*, K^*)$ reaction	Stage 2			К1.8	Welse, Shimizu, Sakurai	
E29	H.Ohnishi	RIKEN	Search for φ meson nuclear bound states in the pbar + ^{A}Z -> φ + $^{(A-1)}(Z-1)$ reaction	Stage 1			к1.1	Dote, Shimizu, Nagae, Gross-Perdekamp	
E31	H.Noumi	Osaka U	Spectroscopic study of hyperon resonances below KN threshold via the (K'n) reaction on Deuteron	Stage 1			K1.8BR	Weise,Shimizu,Imal,Kishimoto	
T3Z	A. Rubbia	ETH, Zurich	Towards a Long Baseline Neutrino and Nucleon Decay Experiment with a next-generation 100 kton Liquid Argon TPC detector at Okinoshima and an intensity upgraded J-PARC Neutrino beam	Test Experiment	schedule and beam time will be coordinated by JPNC		K1.1BR	Blucher, Inoue, Louis,Kleinknecht	
P33	H. M. Shimizu	Nagoya U	Measurement of Neutron Electric Dipole Moment	Deferred			Linac	Blucher, Louis, Gross-Perdeckamp, Kleinknecht, Imai, Isidori	

採択された実験(つづき)

---- J-PARC PAC Approval summary after the 15th meeting ---

Proposals

E34	N. Saito, M. Iwasaki	KEK, RIKEN	An Experimental Proposal on a New Measurement of the Muon Anomalous Magnetic Moment g-2 and Electric Dipole Moment at J-PARC	Stage 1		MLF	Louis,Browder,Inoue, Gross-Perdeckamp, Isidori
P36	M. Kohl, S.Shimizu	Hampton U, Osaka U	Measurement of $\Gamma(K+\cdot>e+\nu)/\Gamma(K+\cdot>\mu+\nu)$ and Search for heavy sterile neutrinos using the TREK detector system	Stage 1		K1.1BR	Browder, Blucher, Kleinknecht, Louis, Isidori
E40	K.Miwa	Tohoku U	Measurement of the cross sections of Σp scatterings	Stage 1		к1.8	Gross-Perdekamp, Dote, Nagae,Imai
P41	M.Aoki	Osaka U	An Experimental Search for μ – e Conversion in Nuclear Field at a Sensitivity of 10 $^{-14}$ with Pulsed Proton Beam from RCS	Deferred		MLF	Louis, Weise, Inoue, Kleinknecht, Bowder, Isidori
P42	J.K. Ahn	Pusan National U	Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer	Stage 1		К1.8	Kishimoto, Dote, Nagae,Sakurai
T43	K.Aoki	RIKEN	Test of Hadron Blind Detector and GEM Tracker for the J-PARCE16 Experiment	Test Experiment		K1.1BR	
T44	T.Koike	Tohoku U	Study of in-beam performance of Hyperball-J Ge detector units with the current beam structures at the K1.1BR beam line	Test Experiment	schedule and beam time will be coordinated by JPNC	K1.1BR	Discussion in the sub-committee
P45	K.H. Hicks, H. Sako	Ohio U, JAEA	3-Body Hadronic Reactions for New Aspects of Baryon Spectroscopy	Deferred		к1.8	Shimizu, Dote, Nagae
P46	K. Ozawa	кек	EDIT2013 beam test program	(no discussion)		K1,1BR	Discussion in the sub-committee
		-		0			Report in PAC15
							Decision in PAC15

全部実施するのに、年間2000時間としても3~4年必要なほど たくさんの実験提案がある!

<u>中性子星内部の核物質</u>

(東北大田村さんトラペ)

<u>現在J-PARCのみで可能な S=-2核の研究</u>

→ 高密度核物質の理解にも最も重要

beam dump

beam sweeping magnet

liquid ³He-target system

beam line

spectrometer

neutron counter

E15実験:

高密度核物質の候補K-pp束縛状態探索

反K 中間子は、核子との間に強い引力 をもつ(実験結果)	K中間子 原子核	束縛エネ ルギー [MeV]	幅 [MeV]	中心 密度		
	К⁻р	27	40	3.5 ρ ₀		
近年の埋誦計算によると、甲性子星	К⁻рр	48	61	3.1 ρ ₀		
得られる可能性がある!	К⁻ррр	97	13	9.2 ρ ₀		
	K⁻ppn	118	21	8.8 ρ ₀		
K中間子原子核 比較的簡単なK⁻pp束縛状態の存在 を確かめる		ppn	PJ	onK [•] 2.0 1.5 隣 1.0 ^[1/fm³] 0.5 ¹		
超高密度物質中での ハドロンの性質の検証	(ρ ₀ =3x10 ¹⁴ g/cm ³ =0.17/fm ³) T.Yamazaki, A.Dote, Y.Akiaishi PLB587,167(2004).					

これまでの結果 (2012年2月/6月)

>BR $(K_L \rightarrow \pi^0 \nu \overline{\nu})$

5

9

C

- High intensity K_L beam
- Csl calorimeter (from KTeV)
- Waveform digitization
- New Charged and Photon Veto detectors CC01 FB CC02 MB BCV CV CsI CC03

- 2015年頃完成予定
 - 核物質中での質量現象実験(E16)

高運動量ビームライン

途中に標的を置いて、2次粒子の利用計画
 チャーム・バリオン・スペクトロスコピー等

物質の質量はどのように生じたか?

現在の真空と、物質の質量の99%をつくりだしているのは量子色力学(強い相互作用)である。

「素粒子」の質量は「真空」(環境)の状態により変化する

クォークからつくられるハドロン(陽子・中性子や中間子)の質量も同様

(KEK 田中さんのスライド)

QCD質量は周りの環境によって変化する!

E325から**"J-PARC E16"**へ --- 2015年頃開始予定---

30GeV陽子ビームを用いた
ρ, ω, φ, J/ψの電子対崩壊測定

●高統計測定
•E325実験の100倍の統計
•~6x10⁵のφ→e⁺e⁻

●系統的測定

 ・様々な原子核サイズを用いる (p, C, Cu, Pb, etc.)

- •インパクト・パラメーター依存性
- •質量の運動量依存性 (分散関係)

理論予想に対する決定力向上 →電子対測定によるベクトル中間子測定の決定的実験へ!

<u>ハドロンホール拡張による物理</u>

