Search for the Kpp bound state

via the ${ }^{3} \mathrm{He}(K, n)$ reaction at $1 \mathrm{GeV} / c$

- Introduction
- J-PARC E15 experiment
- Latest result on ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{n}\right)$

Tadashi Hashimoto for the J-PARC E15 collaboration

The J-PARC E15 collaboration

S. Ajimura ${ }^{\text {a }}$, G. Beer ${ }^{\text {b }}$, H. Bhang ${ }^{\text {c }}$, M. Bragadireanu ${ }^{\mathrm{e}}$, P. Buehler ${ }^{\mathrm{f}}$, L. Busso ${ }^{\text {g.h }}$, M. Cargnelli ${ }^{\mathrm{f}}$, S. Choi ${ }^{\mathrm{c}}$, C. Curceanu ${ }^{\text {d }}$, S. Enomoto i, D. Faso ${ }^{\text {g.h }}$, H. Fujioka ${ }^{\text {j }}$, Y. Fujiwara ${ }^{k}$, T. Fukuda, C. Guaraldo ${ }^{\text {d }}$, T. Hashimoto ${ }^{k}$, R. S. Hayano ${ }^{k}$, T. Hiraiwa ${ }^{a}$, M. Iio $^{\circ}$, M. Iliescu ${ }^{d}$, K. Inoue ${ }^{i}$, Y. Ishiguro ${ }^{j}$, T. Ishikawa ${ }^{k}$, S. Ishimoto ${ }^{\circ}$, T. Ishiwatari ${ }^{f}$, K. Itahashi ${ }^{n}$, M. Iwai ${ }^{\circ}$, M. Iwasaki ${ }^{\text {m,n* }}$, Y. Ohnishi n, S. Okadan ${ }^{\text {, H. Outa }}{ }^{\text {n }}$, K. Piscicchia ${ }^{d}$, M. Poli Lener ${ }^{\text {d }}$, A. Romero Vidal ${ }^{\text {d }}$, Y. Sada ${ }^{j}$, A. Sakaguchi', F. Sakuma ${ }^{\text {n }}$, M. Sato $^{\text {n }}$, A. Scordo ${ }^{\text {d }}$, M. Sekimoto ${ }^{\circ}$, H. Shi ${ }^{k}$, D. Sirghi ${ }^{\text {d,e }}$, F. Sirghi ${ }^{\text {d,e }}$, K. Suzuki ${ }^{f}$, S. Suzuki ${ }^{\circ}$, T. Suzuki ${ }^{k}$, K. Tanida ${ }^{\text {c }}$, H. Tatsuno $^{\text {d }}$, M. Tokuda ${ }^{m}$, D. Tomono ${ }^{\text {n }}$, A. Toyoda ${ }^{\circ}$, K. Tsukada ${ }^{\text {r }}$, O. Vazquez Doce ${ }^{\text {d,s }}$, E. Widmann ${ }^{f}$, B. K. Weunschek ${ }^{f}$, T. Yamaga i, T. Yamazaki ${ }^{k, n}$, H. Yim ${ }^{\text {t }}$, Q. Zhang ${ }^{\text {n }}$, and J. Zmeskal ${ }^{\text {f }}$
(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada I*I
(c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea
(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy II
(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania II
(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria $二$
(g) INFN Sezione di Torino, Torino, Italy II
(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy II
(i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
(j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
(p) Technische Universität München, D-85748, Garching, Germany
(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
(r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan
(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany
(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea :

(*) Spokesperson
(\$) Co-Spokesperson

Anti-kaon nucleon interaction at low energy

- Kaon:
- The lightest hadron which contains a strange quark

$$
K^{+}=u \bar{s}, K^{0}=d \bar{s}, \bar{K}^{0}=\bar{d} s, K^{-}=\bar{u} s,
$$

Kbar: Anti-Kaon

- K ${ }^{\text {bar }} \mathbf{N}$: Attractive in isospin=0
- Kaonic hydrogen X-ray measurements
- Low-energy scattering experiments
- Existence of $\Lambda(1405)$ below the K-p threshold
- Difficult to explain by a simple 3-quark state.
- K-p quasi-bound state? Kp-пг two-pole structure?
- Open question: how strong attraction??

Kaonic nuclear bound state

What will happen when anti-kaon is embedded in nucleus?
Assumption!
1.Y. Akaishi and T. Yamazaki. Phys. Rev. C 65, 044005 (2002).
2.T. Yamazaki and Y. Akaishi. Physics Letters B 535, 70-76 (2002).

$K-p p:\left[K^{\operatorname{bar}}(N N)_{l=1}\right]_{l=1 / 2}$
the lightest kaonic nucleus
dense nuclei are predicted

(b) ${ }^{3} \mathrm{He} \mathrm{K}^{-}$
A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Kaon in nuclear medium?

T. Hashimoto@SOTANCP3, May 29, 2014

K-pp few-body calculations

| M(1405) ansatz | Method | B.E.[MeV] | [[MeV] |
| :--- | :--- | :--- | :--- | :--- |
| T. Yamazaki, Y. Akaishi(2002) | var. | 48 | 61 |
| N.V. Shevchenko, A. Gal, J. Mares(2007) | Fad. | $50-70$ | $90-110$ |
| Y. Ikeda, T. Sato (2007,2009) | Fad. | $60-95$ | $45-80$ |
| S. Wycech, A.M. Green (2009) | var. | $40-80$ | $40-85$ |
| S. Maeda, Y. Akaishi, T. Yamazaki (2013) | Fad. | 51.5 | 61 |
| chiral \& energy dependent | | | |
| N. Barnea, A. Gal, E.Z. Liverts(2012) | var. | 16 | 41 |
| A. Dote, T. Hyodo, W. Weise(2008,09) | var. | $17-23$ | $40-70$ |
| Y. Ikeda, H. Kamano, T. Sato(2010) | Fad. | $9-16$ | $34-46$ |

- All calculations agree on the existence of the bound state
- Model of the K ${ }^{\text {bar }} \mathbf{N}$ interaction makes large difference

Claims of K-pp candidates

FINUDA

1.M. Agnello et al. Phys. Rev. Lett. 94, 212303 (2005).
back-to-back Λ p pair from stopped K- on ${ }^{6} \mathrm{Li}$, ${ }^{7} \mathrm{Li},{ }^{12} \mathrm{C}$

DISTO

T. Yamazaki et al. Phys. Rev. Lett. 104, 132502 (2010).
P. Kienle et al. Eur. Phys. J. A 48, 183 (2012).

Exclusive pp \rightarrow ("K-pp" $\left.{ }^{+}{ }^{+}\right) \rightarrow \Lambda p K^{+}$channel

Deeper than any theories. Interpretations are still arguable...

J-PARC E15 $1^{\text {st }}$ stage physics run

$1 \mathrm{GeV} / \mathrm{c}$

1.2~1.3 GeV/c

- Kaon-induced simple reaction
- Focus on the formation channel
- ${ }^{3} \mathrm{He}(\mathrm{K}, \mathrm{n}) \mathrm{X}$ semi-inclusive analysis
- ${ }^{3} \mathrm{He}(\mathrm{K}$ ',p)X semi-inclusive analysis
- Hint of exclusive ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \wedge \mathrm{p}\right) \mathrm{n}$ events
- First physics data taking in May, 2013
- 24 kW x 4 days, $\sim 5 \times 10^{9}$ kaons on ${ }^{3} \mathrm{He}$
- < 1% of full proposal ($270 \mathrm{~kW} \times 40$ days)

Principle of the ${ }^{3} \mathrm{He}(\mathbf{K} ; \mathrm{n})$ measurement

- Kaon beam analysis : select single-beam events \& reconstruct beam momentum
- Neutron analysis:

TO-NC TOF with vertex information provided by the CDS

J-PARC K1.8BR spectrometer

K. Agari et. al., PTEP 2012, 02B011

Basic performances

@ 24 kW
 kaon/spill : 150k K/n ratio : 0.45

$\sigma_{\text {beam }} \sim 2 \mathrm{MeV} / \mathrm{c}$
@ 1 GeV/c

Basic performances

Basic performances

Semi-inclusive spectrum

$$
\theta^{l a b}=0^{\circ} @ p_{K}=1 \mathrm{GeV} / \mathrm{c}
$$

biased by the request of charged track(s) in the CDS

Missing-mass resolution

Background evaluation

There remains a statistically significant excess

What is the origin of the excess?

naively understood with attractive \& absorptive potential

What is the origin of the excess?

naively understood with attractive \& absorptive potential

 other possibilities are...1. non-mesonic two-nucleon absorption: $\Lambda(1405)$ n branch

- rather large cross-section $\sim 5 \mathrm{mb} / \mathrm{sr}$ needed
- somehow suppressed $\Lambda(1520) \mathrm{n}$ branch $<2 \mathrm{mb} / \mathrm{sr}$

15
$20 \mathrm{mb} / \mathrm{sr}$ @ $\theta=0$
B.W. with PDG mass\&width

$$
K^{-}+{ }^{3} \mathrm{He} \rightarrow Y^{(*)}+N+N_{s} .
$$ $\mathrm{P}_{\text {spectator }}$

$\Lambda N / \Sigma N$ branches are negligibly small
T. Hashimoto@SOTANCP3, May 29, 2014

What is the origin of the excess?

naively understood with attractive \& absorptive potential

other possibilities are...

1. non-mesonic two-nucleon absorption: $\Lambda(1405)$ n branch

- rather large cross-section $\sim 5 \mathrm{mb} / \mathrm{sr}$ needed
- somehow suppressed $\Lambda(1520) \mathrm{n}$ branch $<2 \mathrm{mb} / \mathrm{sr}$

2. Loosely-bound K-pp state

- The excess corresponds to $1 \sim 2 \mathrm{mb} / \mathrm{sr}$
- decay mode assumption: $K-p p \rightarrow \Lambda p / \Sigma p / \pi \Sigma p$
- cf.) Theory:
- Pheno. pot.: a few mb/sr
T. Koike and T. Harada. Phys. Rev. C 80, 055208 (2009).
- Chiral pot.: a few hundreds $\mu \mathrm{b} / \mathrm{sr}$
J. Yamagata-Sekihara, et. al., Phys. Rev. C, 80, 045204 (2009).

Semi-inclusive spectrum

Upper limits for deeply-bound states

$200 \sim 300 \mu \mathrm{~b} / \mathrm{sr}\left(\theta_{\mathrm{lab}}=\mathbf{0}^{\circ}\right)$ upper limits in the ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{n}\right)$ reaction for FINUDA/DISTO peaks

	B.E. (MeV)	Γ (MeV)	95\% C.L. (mb/sr)
FINUDA	115	67	~ 0.2
DISTO	103	118	~ 0.3
		18	T. Hashimoto@SOTANCP3, May 29, 2014

Conclusion

- J-PARC E15 searches for the "K-pp" bound state
- 1st physics data with $24 \mathrm{~kW} * 4$ day running (< 1% of full proposal)
- All the detector subsystems are working well with the good performance as designed
- ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{n}\right) \mathrm{X}$ spectrum was obtained for the first time
- Semi-inclusive condition
- We observed a tail component in the K-bound region which is hard to be explained by ordinary processes
- Deeply-bound state claimed by DISTO and FINUDA was not seen as a significant peak. Its upper limit was determined to be $0.2 \sim 0.3 \mathrm{mb} / \mathrm{sr}$.
- First publication is coming soon!

