Search for the Kpp bound state via the ³He(K,n) reaction at 1 GeV/c

- Introduction
- ► J-PARC E15 experiment
- Latest result on ³He(K⁻,n)

Tadashi Hashimoto for the J-PARC E15 collaboration

The J-PARC E15 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j^{\$}}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567–0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🛤

(c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea 💌

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽

(e) National Institute of Physics and Nuclear Engineering – IFIN HH, Romania 🚺

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 鱼

(j) Department of Physics, Kyoto University, Kyoto, 606–8502, Japan 🔸

(k) Department of Physics, The University of Tokyo, Tokyo, 113–0033, Japan •

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 鱼

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •

(p) Technische Universität München, D-85748, Garching, Germany 💳

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan •

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson

Anti-kaon nucleon interaction at low energy

- ► Kaon:
 - The lightest hadron which contains a strange quark

$$K^+ = u\overline{s}, \ K^0 = d\overline{s}, (\overline{K^0} = \overline{ds}, \ K^- = \overline{us})$$

- KbarN: Attractive in isospin=0
 - Kaonic hydrogen X-ray measurements
 - Low-energy scattering experiments

► Existence of ∧(1405) below the K⁻p threshold

- Difficult to explain by a simple 3-quark state.
- K-p quasi-bound state? Kp- $\pi\Sigma$ two-pole structure?
- Open question: how strong attraction??

Kbar: Anti-Kaon

Kaonic nuclear bound state

What will happen when anti-kaon is embedded in nucleus?

K-pp few-body calculations

Λ(1405) ansatz	Method	B.E.[MeV]	Γ[MeV]
T. Yamazaki, Y. Akaishi(2002)	var.	48	61
N.V. Shevchenko, A. Gal, J. Mares(2007)	Fad.	50-70	90-110
Y. Ikeda, T. Sato (2007,2009)	Fad.	60-95	45-80
S. Wycech, A.M. Green (2009)	var.	40-80	40-85
S. Maeda, Y. Akaishi, T. Yamazaki (2013)	Fad.	51.5	61

chiral & energy dependent	Method	B.E.[MeV]	Γ[MeV]
N. Barnea, A. Gal, E.Z. Liverts(2012)	var.	16	41
A. Dote, T. Hyodo, W. Weise(2008,09)	var.	17-23	40-70
Y. Ikeda, H. Kamano, T. Sato(2010)	Fad.	9-16	34-46

- All calculations agree on the existence of the bound state
- Model of the K^{bar}N interaction makes large difference

Claims of K-pp candidates

Deeper than any theories. Interpretations are still arguable...

J-PARC E15 1st stage physics run

Kaon-induced simple reaction

Focus on the formation channel

- ³He(K⁻,n)X semi-inclusive analysis
- ³He(K⁻,p)X semi-inclusive analysis
- Hint of exclusive ³He(K⁻, Ap)n events

First physics data taking in May, 2013

- 24 kW x 4 days, ~ 5 x 10^9 kaons on 3 He
- <1% of full proposal (270 kW x 40 days)

Principle of the ³He(K⁻,n) measurement

- Kaon beam analysis : select single-beam events & reconstruct beam momentum
- Neutron analysis: T0-NC TOF with vertex information provided by the CDS

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

liquid ³He-target system

CDS.

1118

beam line spectrometer

neutron counter charge veto counter proton counter

Basic performances

Basic performances

T. Hashimoto@SOTANCP3, May 29, 2014

Semi-inclusive spectrum

Missing-mass resolution

Background evaluation

There remains a statistically significant excess

What is the origin of the excess?

naively understood with attractive & absorptive potential

What is the origin of the excess?

naively understood with attractive & absorptive potential other possibilities are...

1. non-mesonic two-nucleon absorption: Λ(1405)n branch

- rather large cross-section ~ 5 mb/sr needed
- somehow suppressed $\Lambda(1520)$ n branch < 2 mb/sr

What is the origin of the excess?

naively understood with attractive & absorptive potential other possibilities are...

1. non-mesonic two-nucleon absorption: Λ(1405)n branch

- rather large cross-section ~ 5 mb/sr needed
- somehow suppressed $\Lambda(1520)$ n branch < 2 mb/sr

2. Loosely-bound K⁻pp state

- The excess corresponds to 1~2 mb/sr
 - decay mode assumption: $K^-pp \rightarrow \Lambda p/\Sigma p/\pi\Sigma p$
- cf.) Theory:
 - Pheno. pot.: a few mb/sr T. Koike and T. Harada. *Phys. Rev. C* **80**, 055208 (2009).
 - Chiral pot.: a few hundreds µb/sr
 J. Yamagata-Sekihara, *et. al.*, *Phys. Rev. C*, *80*, 045204 (2009).

Semi-inclusive spectrum

17

Upper limits for deeply-bound states

200 ~ 300 μ b/sr ($\theta_{lab}=0^{\circ}$) upper limits in the ³He(K⁻,n) reaction for FINUDA/DISTO peaks

	B.E. (MeV)	Γ (MeV)	95% C.L. (mb/sr)
FINUDA	115	67	~0.2
DISTO	103	118	~0.3
		18	T. Hashimoto@SOTANC

Conclusion

► J-PARC E15 searches for the *"K⁻pp"* bound state

- 1st physics data with 24 kW*4 day running (< 1% of full proposal)
- All the detector subsystems are working well with the good performance as designed

³He(K⁻,n)X spectrum was obtained for the first time

- Semi-inclusive condition
- We observed a tail component in the K-bound region which is hard to be explained by ordinary processes
- Deeply-bound state claimed by DISTO and FINUDA was not seen as a significant peak. Its upper limit was determined to be 0.2~0.3 mb/sr.

First publication is coming soon!