Recent progress and prospect of $\Sigma^{\pm}p$ scattering experiments

T. Nanamura¹, J-PARC E40 collaboration, T. Hashimoto¹, M. Iwasaki¹, H. Noumi² and F. Sakuma¹ ¹Nishina center for accelerator-based science, RIKEN, Wako, Saitama 351-0198, Japan

²Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

Abstract: Hyperon-proton scattering experiment is one of the most direct methods to study the hyperon-nucleon interaction, as in the case of the NN interaction. Although it had been experimentally difficult for a long time due to short lifetime of hyperons, we successfully performed novel high-statistics $\Sigma^{\pm}p$ scattering experiment at K1.8 beamline in Hadron Experimental Facility (J-PARC E40 experiment). We derived the differential cross sections of $\Sigma^{\pm}p$ with good precisions. Moreover, we performed phase shift analysis for $\Sigma^{+}p$ channel exploiting the simple representation of the $\Sigma^+ p$ system with respect to the multiplets of the BB interaction. Now, we are considering the possibility of a further Σ^{\pm} p scattering experiment at K1.8 BR beamline with the new large acceptance Cylindrical Detector System.

1.Introduction

We investigate interactions between the octet baryons.

- An extension of NN interaction
- **Characteristic short range forces**
- \rightarrow Role of quarks in B-B interaction can be understood.

Irrep: $8 \otimes 8 = 27 \oplus 8 \oplus 1 \oplus 10 \oplus 8_{a}$ **27,10*** : common to nuclear force **10** : strong repulsion due to quark Pauli effect : attractive core (H-dibaryon?)

2.Previous studies on \SigmaN interaction

- Scattering experiment is most direct methods to study two-body interaction. However, hyperon-nucleon (YN) scattering experiment was difficult due to short lifetime of hyperon ($\sim 10^{-10}$ s). Difficulty of producing enough amount of hyperon beam Difficulty of detection and identification of scattering hyperon \rightarrow Data is limited for all YN channels
- Past ΣN Scattering experiment
- Σ^+ p (ΣN , I=3/2) channel is suitable to investigate 10-plets.

Bubble chamber experiments, KEK E251[1], E289[2] [1] J.K. Ahn et al. Nucl. Phys. A 648 (1999) pp. 263-279. [2] J.K. Ahn *et al.* Nucl. Phys. A 761 (2005) 41. number of events was limited by detector performances (~few hundred)

[3] T. Nagae *et al.* Phys. Rev. Lett. 80 (1995) 1605.

[4] H. Noumi et al., Phys. Rev. Lett. 89, 072301 (2002).

- Σ -nucleus interaction, Σ hypernuclei \rightarrow only ⁴ He exists^[3].
 - Averaged Σ N interaction is repulsive^[4]. • Σ N interaction has large isospin dependence
- "Difficult" Σ^{\pm} p scattering experiment was needed to investigate strong repulsion of Σ^+ p system and systematic study of Σ N interaction.

contribution of ³D is small

³S₁ :related to quark Pauli effect

3.J-PARC E40 Experiment: Measurement of the differential cross sections of Σ^{\pm} p scatterings with high statistics

taken as the biproduct of the CDS commissioning. (~End of JFY 2026)

Experimental concept

Pion from K⁻+p \rightarrow $\Sigma^{\pm}+\pi^{\mp}$ reaction, recoil proton and

Summary

•Hyperon-nucleon scattering experiment gives us very important information for B-B interaction, especially quark Pauli effect. • Σ^{\pm} p scattering experiment (J-PARC E40) was performed by 2020 Jun, few thousands of Σ^{\pm} p scattering events were identified. • We derived the differential cross sections of $\Sigma^{\pm}p$ with good precisions. Phase shift analysis for the $\Sigma^{+}p$ scattering was also performed. • Now, we are considering the possibility of further $\Sigma^{\pm}p$ scattering experiment at K1.8 BR beamline.