Search for the *K pp* bound state via the infight-kaon reaction on helium-3

- Introduction
- ► J-PARC E15 experiment
- First result on semi-inclusive ³He(K⁻,n)
- ► Preliminary result on exclusive ³He(K⁻, ∧p)n

Tadashi Hashimoto for the J-PARC E15 collaboration

The first paper

Search for the deeply bound K^-pp state via the ${}^{3}\text{He}(K^-, n)$ reaction at $p_{K^-}=1$ GeV/c

T. Hashimoto^{a,1,*}, S. Ajimura^b, G. Beer^c, H. Bhang^d, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f,
S. Choi^d, C. Curceanuⁱ, S. Enomoto^b, D. Faso^{g,h}, H. Fujioka^k, Y. Fujiwara^a, T. Fukuda^l, C. Guaraldoⁱ, R. S. Hayano^a,
T. Hiraiwa^b, M. Iioⁿ, M. Iliescuⁱ, K. Inoue^j, Y. Ishiguro^k, T. Ishikawa^a, S. Ishimotoⁿ, T. Ishiwatari^f, K. Itahashi^m,
M. Iwaiⁿ, M. Iwasaki^{o,m}, Y. Kato^m, S. Kawasaki^j, P. Kienle^{p,2}, H. Kou^o, Y. Ma^m, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l,
O. Morra^g, T. Nagae^k, H. Noumi^b, H. Ohnishi^{m,b}, S. Okada^m, H. Outa^m, K. Piscicchiaⁱ, M. Poli Lenerⁱ,
A. Romero Vidalⁱ, Y. Sada^k, A. Sakaguchi^j, F. Sakuma^m, M. Sato^m, A. Scordoⁱ, M. Sekimotoⁿ, H. Shi^a, D. Sirghi^{i,e},
F. Sirghi^{i,e}, K. Suzuki^f, S. Suzukiⁿ, T. Suzuki^a, K. Tanida^d, H. Tatsuno^a, M. Tokuda^o, D. Tomono^m, A. Toyodaⁿ,
K. Tsukada^r, O. Vazquez Doce^{i,s}, E. Widmann^f, B. K. Wuenschek^f, T. Yamaga^j, T. Yamazaki^{a,m}, H. Yim^t,
Q. Zhang^m, J. Zmeskal^f, (J-PARC E15 Collaboration)

^aDepartment of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ^bResearch Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan ^cDepartment of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ^dDepartment of Physics, Seoul National University, Seoul, 151-742, South Korea ^eNational Institute of Physics and Nuclear Engineering - IFIN HH, Romania ^fStefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria ^gINFN Sezione di Torino, Torino, Italy ^hDipartimento di Fisica Generale, Universita' di Torino, Torino, Italy ⁱLaboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ^jDepartment of Physics, Osaka University, Osaka, 560-0043, Japan ^kDepartment of Physics, Kyoto University, Kyoto, 606-8502, Japan ¹Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan ^mRIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan ⁿHigh Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ^oDepartment of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan ^pTechnische Universität München, D-85748, Garching, Germany ^qGraduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan ^rDepartment of Physics, Tohoku University, Sendai, 980-8578, Japan ^sExcellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany ^tKorea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

T. Hashimoto@PANIC2014, Aug 25, 2014

 \rightarrow talk by K. Lapidus

Anti-kaon nucleon interaction at low energy

► K^{bar}N interaction: attractive in isospin=0

- Kaonic hydrogen X-ray measurements
- Low-energy scattering experiments

► K^{bar}-nucleus interaction: attractive

Systematic measurement of kaonic-atom X-rays

→ Tomorrow's talk by S. Okada (RIKEN)

Open question: How strong attraction ??

- ► **(1405) below the K⁻p threshold**(1432 MeV)
 - Difficult to explain by an ordinary 3-quark state
 - K-p quasi-bound state? Kp-πΣ two-pole structure?
- What happens in heavier nuclear systems; K⁻pp, K⁻ppn, etc...

 \rightarrow talk by C. Curceanu

Kaonic nuclear bound state

What will happen when an anti-kaon is embedded in a nucleus?

K-**pp** : [K^{bar}(NN)_{I=1}]_{I=1/2} the lightest kaonic nucleus

Kaonic nuclear bound state

What will happen when an anti-kaon is embedded in a nucleus?

K-**pp** : [K^{bar}(NN)_{I=1}]_{I=1/2} the lightest kaonic nucleus

 ρ/ρ_0

1.T. Waas et al. Physics Letters B 379, 34-38 (1996).

1

 $\mathbf{2}$

3

0.0**L** 0

K-pp few-body calculations

Λ(1405) ansatz	Method	B.E.[MeV]	Γ[MeV]
T. Yamazaki, Y. Akaishi(2002)	var.	48	61
N.V. Shevchenko, A. Gal, J. Mares(2007)	Fad.	50-70	90-110
Y. Ikeda, T. Sato (2007,2009)	Fad.	60-95	45-80
S. Wycech, A.M. Green (2009)	var.	40-80	40-85
S. Maeda, Y. Akaishi, T. Yamazaki (2013)	Fad.	51.5	61

chiral & energy dependent	Method	B.E.[MeV]	Γ[MeV]
N. Barnea, A. Gal, E.Z. Liverts(2012)	var.	16	41
A. Dote, T. Hyodo, W. Weise(2008,09)	var.	17-23	40-70
Y. Ikeda, H. Kamano, T. Sato(2010)	Fad.	9-16	34-46

- All calculations agree that the bound state exists !
- Model of the K^{bar}N interaction makes large difference
- Experimental information is important

Experimental situation

Deeper than any theories. Interpretations are still arguable...

Experimental situation

Inflight kaon reaction on ³He

Inflight kaon reaction on ³He

J-PARC E15 1st stage physics run

First physics-data taking in May, 2013

- 24 kW x 4 days
- ~ 5 x 10^9 kaons on ³He
- < 1% of full proposal
 (270 kW x 40 days)

Focus on the formation channel

- ³He(K⁻,n)X semi-inclusive analysis
 - a large production cross section predicted
- ³He(K⁻,p)X semi-inclusive analysis
- Hint of exclusive ³He(K⁻, Ap)n_{miss}. events

Koike&Harada calculation @ $P_{\kappa}=1$ GeV/c, $\theta_{lab}=0^{\circ}$

T. Koike and T. Harada. *Physics Letters B* **652**, 262–268 (2007). T. Koike and T. Harada. *Phys. Rev. C* **80**, 055208 (2009).

J-PARC E15 1st stage physics run

First physics-data taking in May, 2013

- 24 kW x 4 days
- ~ 5 x 10^9 kaons on ³He
- < 1% of full proposal
 (270 kW x 40 days)

Focus on the formation channel

- ⁻ ³He(K⁻,n)X semi-inclusive analysis
 - a large production cross section predicted
- ³He(K⁻,p)X semi-inclusive analysis
- Hint of exclusive ³He(K⁻, Ap)n_{miss}. events

Koike&Harada calculation @ $P_{\kappa}=1$ GeV/c, $\theta_{lab}=0^{\circ}$

T. Koike and T. Harada. *Physics Letters B* **652**, 262–268 (2007). T. Koike and T. Harada. *Phys. Rev. C* **80**, 055208 (2009).

Japan Proton Accelerator Research Complex

Japan Proton Accelerator Research Complex

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

liquid ³He-target system

CDS

beam line spectrometer

neutron counter charge veto counter proton counter

Principle of the ³He(K⁻,n) analysis

► Kaon-beam analysis :

select single-beam events & reconstruct beam momentum

Forward-neutron analysis:

T0-NC TOF with vertex information provided by the CDS

Spectrometer performances

Spectrometer performances

T. Hashimoto@PANIC2014, Aug 25, 2014

Semi-inclusive spectrum

Missing-mass resolution

Upper limits of the deeply bound K⁻pp production

Upper limits of the deeply bound K⁻pp production

The obtained upper limits are

0.5-5% cross section of quasi-free K scattering

one order of magnitude smaller than Koike&Harada prediction

Exclusive analysis (preliminary)

- Begin and B
 - ~20% $\Sigma^{0}(\rightarrow \Lambda \gamma)$ contamination
- Beroket Strain Stra

we definitely need more data...

Structure just below the threshold

Conclusion

J-PARC E15 searches for the "K⁻pp" bound state via the in-flight kaon reaction.

• 1st physics data with 24 kW*4 day running (< 1% of full proposal)

Semi-inclusive ³He(K⁻,n)X spectrum was finalized

- Deeply bound state, like the FINUDA and DISTO observations, was not seen as a distinct peak in this reaction.
 - 30–270 µb/sr upper limits (0.5–5% of Kn->nK cross section)

More physics outputs will come

- Some hints of the "tail-like structure" by a combined analysis with forward proton and exclusive (K⁻,Λp) channels
- New data takings planned next year
 - H2(calibration), D2(Λ (1405)) and ³He-targets(10 times statistics)