J－PARC K1．8BRビームラインにおける液体 ${ }^{3} \mathrm{He}$ 標的へのK－ビーム照射実験（2）

－Forward neutron in J－PARC E15
－NC analysis
－${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{K}^{0} \mathrm{~s} \mathrm{n}\right) \mathrm{d}$ analysis
－neutron semi－inclusive spectrum

Tadashi Hashimoto for J－PARC E15 collaboration

J-PARC E15 experiment

A search for the simplest kaonic nucleus K-pp

${ }_{1.2 \sim 1.3 ~ G e V / c}$ Missing mass
${ }^{3} \mathrm{He}$
K-pp

T.Koike and T.Harada, PLB652 (2007) 262

Neutron Counter

－Neutron Counter（NC）
－flight length $\boldsymbol{\sim} \mathbf{1 5} \mathbf{~ m}$
－ $3.2 \mathrm{~m}(\mathrm{~W}) \times 1.5 \mathrm{~m}(\mathrm{H}) \times 0.35 \mathrm{~m}(\mathrm{~T})$
－ 16 columns x 7 layers $=112$ segments
－～20 msr acceptance
－Saint－Gobain BC408\＆412
－ 2 inch PMT（H6410）on both ends
－~ 90 ps σ＠cosmic ray
－34－segmented CVC counter
－Beam sweeping magnet \＆caved beam dump

JPS meeting＠Kochi，September．22nd ，2013

Analysis Method

－Neutron momentum is determined by TOF method
－require at least 1 track in CDC to reconstruct the reaction vertex \rightarrow Target selection，Flight length

NC dE threshold

- Accidental events can be reduced by an order
- Set threshold 5 MeVee
- ~ 160 ps TOF resol.
- $\quad \mathbf{9} \mathrm{MeV} / \mathrm{c}$ Mom. resol. @ $1 \mathrm{GeV} / \mathrm{c}$ neutron

NC spectra

NC spectra

NC spectra

NC spectrum

${ }^{3} \mathrm{He}\left(\mathrm{K}, \mathrm{K}^{0} \mathrm{~s} \mathrm{n}\right) \mathrm{d}$ study for calibration

- NC efficiency measurement
- detection efficiency for $1 \mathrm{GeV} / \mathrm{c}$ neutron is not well established
- Cross section check
- ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{K}^{0} \mathrm{sn}\right) \mathrm{d}$ events were selected by requiring missing mass of K^{0} to be neutron.

$\Pi^{+} \boldsymbol{\pi}$ invariant mass

Neutron Counter Efficiency

－Estimate the neutron position by missing momentum vector \rightarrow check NC fire or not
－real hit／estimated hit number is evaluated by using Geant4
－measured NC efficiency～ 25 \％．
－Consistent with the simulation．（ QGSP＿BIC＿HP in Geant4）

$\mathrm{K}^{0}{ }_{\mathrm{s}}$ differential cross section

－Total cross section～ 7.5 mb （ $\mathrm{H}_{2}: 5.6 \sim 7.8 \mathrm{mb} @ 1 \mathrm{GeV} / \mathrm{c}$ ）
－The effective proton number is between 1 and 2 as expected

JPS meeting＠Kochi，September．22nd ，2013

3He（K－，n）X＂semi－inclusive＂spectrum

3He（K－，n）X＂semi－inclusive＂spectrum

－Global shape is roughly understood by known processes．
－We require at least 1 charged track in CDS． Direct comparison with theoretical spectra is not possible．

Summary

- The neutron counter worked fine.
- momentum resolution $9 \mathrm{MeV} / \mathrm{c}$ @ $1.2 \mathrm{GeV} / \mathrm{c}$ neutron
- measured efficiency ~25 \%
- cross section of quasi-free K^{0} s charge exchange production on ${ }^{3} \mathrm{He}$ was evaluated.
- total cross section : $\sim 7.5 \mathrm{mb}$
- effective proton number : 1 ~ 1.5
- (semi-)inclusive ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \mathrm{n}\right) \mathrm{X}$ spectrum was obtained.
- global shape is roughly understood by known processes.
S. Ajimura ${ }^{a}$, G. Beer ${ }^{b}$, H. Bhang ${ }^{c}$, M. Bragadireanu ${ }^{d}$, P. Buehler ${ }^{e}$, L. Busso ${ }^{f, g}$, M. Cargnelli ${ }^{e}$, S. Choi ${ }^{c}$, C. Curceanu ${ }^{h}$, S. Enomoto ${ }^{i}$, D. Faso ${ }^{f, g}$, H. Fujioka ${ }^{j}$, Y. Fujiwara ${ }^{k}$, T. Fukuda ${ }^{l}$, C. Guaraldo ${ }^{h}$, T. Hashimoto ${ }^{k}$, R. S. Hayano ${ }^{k}$, T. Hiraiwa ${ }^{a}$, M. Iio ${ }^{n}$, M. Iliescu ${ }^{h}$, K. Inoue i, Y. Ishiguro j, T. Ishikawa ${ }^{k}$, S. Ishimoto n, T. Ishiwatari ${ }^{e}$, K. Itahashi ${ }^{m}$, M. Iwai ${ }^{n}$,
M. Iwasaki ${ }^{o, m *}$, Y. Kato m, S. Kawasaki ${ }^{i}$, P. Kienle ${ }^{p}$, H. Kou ${ }^{o}$, Y. Ma ${ }^{m}$, J. Marton ${ }^{e}$, Y. Matsuda ${ }^{q}$, Y. Mizoi ${ }^{l}$, O. Morra ${ }^{f}$, T. Nagae $^{j \dagger}$, H. Noumi a, H. Ohnishi ${ }^{m}$, S. Okada ${ }^{m}$, H. Outa ${ }^{m}$, K. Piscicchia ${ }^{h}$, M. Poli Lener ${ }^{h}$, A. Romero Vidal ${ }^{h}$, Y. Sada ${ }^{j}$, A. Sakaguchi ${ }^{i}$, F. Sakuma ${ }^{m}$, M. Sato ${ }^{m}$, A. Scordo ${ }^{h}$, M. Sekimoto ${ }^{n}$, H. Shi ${ }^{k}$, D. Sirghi ${ }^{h, d}$, F. Sirghi ${ }^{h, d}$, K. Suzuki ${ }^{e}$, S. Suzuki ${ }^{n}$, T. Suzuki ${ }^{k}$, K. Tanida ${ }^{c}$, H. Tatsuno ${ }^{h}$, M. Tokuda ${ }^{o}$, D. Tomono ${ }^{m}$, A. Toyoda ${ }^{n}$, K. Tsukada ${ }^{r}$, O. Vazquez Doce ${ }^{h, s}$, E. Widmann ${ }^{e}$, B. K. Wuenschek ${ }^{e}$, T. Yamaga ${ }^{i}$, T. Yamazaki ${ }^{k, m}$, H. Yim ${ }^{t}$, Q. Zhang ${ }^{m}$, and J. Zmeskal ${ }^{e}$
(J-PARC E15 Collaboration)
(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada
(c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea
(d) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (e) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria
(f) INFN Sezione di Torino, Torino, Italy
(g) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
(h) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
(i) Department of Physics, Osaka University, Osaka, 560-0043, Japan
(j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
(1) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan (m) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan
(n) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
(o) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
(p) Technische Universität München, D-85748, Garching, Germany
(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
(r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan
(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany
(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

$\mathrm{K}_{\mathrm{s}}{ }_{\mathrm{s}}$ cross section without \mathbf{n} detection

東京大学

	error（\％）	
f＿good vertex	0.85	5
f＿2 charged	0.69	5
f＿kinema	0.95	1
e＿cdh	1	5
e＿cdctrack	0.92	5
e＿PID	1	1
e＿DAQ	0.116	1
total eff	0.0546	10
acceptance	0.053	5
N＿target（10²3）	1.6	1
N＿beam（10 $\left.{ }^{\mathbf{2 3}}\right)$	4.1	1
N＿event	14,000	10
cross	7.35	20
section（mb）		

$\mathrm{K}^{0}{ }_{\mathrm{s}}$ cross section with n detection

	error(\%)	
f_missn	0.95	1
e_cdctrack	0.92	5
e_PID	1	1
e_DAQ	0.81	1
f_missVETO		
f_overVETO	1	1
		3
total eff	0.6513	5
acceptance	0.00069	20
N_target(10²3)	1.6	1
N_beam(10 ${ }^{\mathbf{9}}$)	4.1	1
N_event	2,200	10
cross	7.47	30
section(mb)		

Inclusive neutron spectrum at forward angle

JPS meeting＠Kochi，September．22nd ，2013
－production 60－156
－should be checked
－69，86，143（PC），156
－junk
－78，150
－USWK
－141，142
－60～65～70～76～83～89～94～100～106～112～119
～125～130～135～143～148～153

