J-PARC K1.8BR ビームラインスペクトロメータの性能評価

- K1.8BRビームライン
- K1.8BRビームラインスペクトロメータ
- TOF測定との比較による評価

東大理 橋本直

for J-PARC E15/E17/E31 collaboration

J-PARC E15/E17/E31 collaboration

橋本直,石川隆,佐藤将春,鈴木隆敏,施赫シ,早野龍五,藤原裕也,山崎敏光^A, 板橋健太^A,岩崎雅彦^{A, F},應田治彦^A,大西宏明^A,岡田信二^A,佐久間史典^A, 友野大^A,Y. Ma^A,飯尾雅実^B,石元茂^B,岩井正明^B,鈴木祥仁^B,関本美知子^B, 豊田晃久^B,石黒洋輔^C,佐田優太^C,永江知文^C,平岩聡彦^C,藤岡宏之^C, 松田恭幸^D,味村周平^E,井上謙太郎^E,榎本瞬^E,川崎信吾^E,野海博之^E, 康寛史^F,徳田真^F,塚田暁^G,阪口篤志^H,福田共和^I,溝井浩^I,谷田聖^J, H. Bhang^J,S. Choi^J,石渡智一^K,鈴木謙^K, P. Buehler^K, M. Cargnelli^K, J. Marton^K, E. Widmann^K, B. Wunschek^K, J. Zmeskal^K, P. Kienle^L,竜野秀行^M, M. Bragadireanu^M, C. Curceanu^M, C. Guaraldo^M, M. Iliescu^M, K. Piscicchia^M, M. Poli Lener^M, A. Scordo^M, A. Romero Vidal^M, D. Sirghi^M, F. Sirghi^M, O. Vazquez Doce^M, G.Beer^N, L.Busso^{O, P}, D.Faso^{O, P}, O.Morra^O, H. Yim^Q

東大理,理研^A,KEK^B,京大理^C,東大教養^D,阪大RCNP^E,東工大^F,東北理^G,阪大理^H,大阪電通大^I,ソウル国立大^J,SMI^K,ミュンヘン工大^L,INFN-LNF^M,Victoria 大^N, Torino 大^O, INFN-Torino^P, KIRAMS^Q

K1.8BR @ J-PARC ハドロンホール

BeamLine Spectrometer この講演!

Neutron TOF counter 榎本 11pSC-3

³He target (D₂ target: 川崎 14aSA-10)

CDS: 佐田 11pSC-2 BPD&BPC: 井上 11pSC-4

J-PARC K1.8BRにおける実験

閾値近辺でのKN(K-nucleus)相互作用に関連した実験 0.9/1.0 GeV/c のK⁻ビームを使用

- E15: Search for deeply bound kaonic nuclei
 - 1.0 GeV/c K- beam
 - 3 He(K⁻, n) K⁻pp, K⁻pp $\rightarrow \Lambda p$
- E17: Kaonic helium atom X-ray
 - 0.9 GeV/c K⁻ beam
 - stop K⁻ on ³He/⁴He
- E31: Spectroscopic study of Λ(1405)
 - 1.0 GeV/c K⁻ beam
 - d(K⁻, n) Λ(1405), Λ(1405) → Σπ

ビームスペクトロメータへの要求

- E15/E31
 - Missing Mass分解能は主に前方TOF分解能が決める。
 - ビーム運動量分解能は0.3%@1GeV/c程度で十分
 - 絶対値は最終的に反応を用いて決定
- E17
 - Kビームを止めるためにビーム運動量の絶対値を知りたい。
 - ³He標的(1 g/cm²)に止められる運動量幅は ±0.3%程度 @ 900 MeV/c

	³ He(K ⁻ ,n)K ⁻ pp	³ He(K ⁻ ,p)K ⁻ pn	³ He(K ⁻ ,d)Λ*	
散乱粒子運動量	1.3 GeV/c	1.3 GeV/c	1.6 GeV/c	
TOF分解能	150ps?	100ps?	100ps?	
運動量分解能	9 MeV/c	6 MeV/c	4 MeV/c	
MissingMass分解能	9 MeV/c	6 MeV/c	5 MeV/c	

前方散乱粒子の分解能のみを考慮

ビームラインスペクトロメータ

- **T**0 FF D5電磁石 磁場~1.63 T @ 1 GeV/c 常にモニター CDS AC (Lakeshore 475,分解能0.1G) BLC1,2 bending angle 55 degrees PDC1,2 有効長 1959 mm (実測値ではない) **D5前後にMWDCを設置** UU'VV'UU'VV'(±45 deg) ×2, 間隔~40 cm typical resolution ~ 200 um BHD 散乱を減らすためヘリウムバッグをD5に設置
 - 38um Mylar window+He(2.2m)

日本物理学会

SX3

2012年秋季大会

D5

Q8

D4

Q7

予想される性能

	x[cm]	θ[mrad]	y[cm]	Φ[mrad]	l[cm]	δ[%]
x'[cm]	0.19678	0.20554	0	0	0	-1.33079
θ'[mrad]	-4.6338	0.24164	0	0	0	-7.67738
y'[cm]	0	0	1.23585	0.32661	0	0
Φ'[mrad]	0	0	1.55747	1.22077	0	0
l'[cm]	0.76774	0.12565	0	0	1	-0.28727
δ'[%]	0	0	0	0	0	1

- Transportによる1次の転送行列
- $\delta = [(\theta' \theta) + 3.75 (x' + x) 0.11 (x' x)]/12.5$ $\rightarrow \Delta \delta \sim (\Delta \theta + 3.75 \Delta x + 0.11 \Delta x) /12.5$ $\sim 0.12 \% @ 1 GeV/c$
 - MWDCの角度分解能 Δθ ~ 0.7 mrad
 - 散乱による Δθ ~ 0.7 mrad, Δx ~ 0.2 cm

東京大学 THE UNIVERSITY OF TOKYO

TOF測定との比較による性能評価

評価方法

as of Feb. 2012, before NC installation

2つの手法の比較でビーム運動量の分解能、絶対値を評価 ①17m TOFから決めたビーム運動量

②ビームスペクトロメータでのトラッキング

評価方法

- 遅い反陽子を利用
 - BHD-T0 online TOFによる p/pbar trigger
 - CMはproton設定
- TOF による運動量の絶対値決定のためT0-TOFstop 間の物質量を最小に押さえた。(GCのみ)
- 電子(β=1)によるタイムオフセット調整
 - GCを用いてelectron trigger を生成
- X方向のスリット全開(mom bite ±3%)
- Run40 (2012年2月) にデータ取得

ビームスペクトロメータ

- TMinuit Fitting
 - 2次の転送行列でPDC-BLCを接続
 - parameter: x, θ , y, ϕ , δp (at PDC)

TOF測定との比較

エネルギー損失の補正

- Geant4でエネルギー損失&多重散乱の影響を見積もる
 - T0(CH) ~ 1g/cm², 空気 ~ 2g/ cm², GCは考慮せず
 - 実際のビームプロファイルと仮定した運動量で粒子を発生
 - 実データと同様の解析を行いTOFから運動量を求めた。

分解能&中心運動量

2012.9.11@京都産業大学

まとめ

- J-PARCハドロンホールK1.8BRビームラインでは
 0.9~1.0 GeV/c のK中間子ビームを用いた実験を行う。
- TOF測定との比較を行い、ビームラインスペクトロメータ が十分なビーム運動量分解能を持つことを確認した。
 0.22 ± 0.02 % @ 1.0 GeV/c
- ビーム中心運動量の絶対値を(暫定的に)決めた。
 1005 ± 3 MeV/c @ 1.0 GeV/c
 反応できちんと確認したい。

stop-K調整のinputとするには 0.9 GeV/cにスケールする必要がある。

K1.8BR beam optics **WSD**?

THE UNIVERSITY OF TOKYO

^{2012.9.11@}京都産業大学

K1.1D1, K1.8D5

- K1.1D1の干渉→K1.8D1をKビームがFFで中心にく るように調整 (Run#43)
- Run#40 ではK1.8D1固定でK1.8D5でKビームの中心 をあわせていた。

