The devlopment of the new Cylindrical Detector System for the systematic investigation of light kaonic nuclei

RARIS Tohoku University

Yuto Kimura for the J-PARC E80 collaboration (RARiS, Tohoku Univ.) J-PARC Symposium 2024

Abstract Following the observation of the simplest kaonic nucleus " K^-pp " in the J-PARC E15 experiment, the J-PARC E80 experiment is planned for the systematic study of kaonic nuclei. As a first step, we will search for $X = K^-ppn$ " by the in-flight $K^-(^4\text{He}, X)$ *n* reaction, focusing on the non-mesonic decays to Λd and Λpn . These decay particles from the kaonic nucleus are detected by the Cylindrical Detector System (CDS) which we are developing for this purpose. With an enlarged acceptance and neutron detection capability, we plan to measure the kaonic nucleus which has more decay particles than the case of E15. In this poster, I will introduce J-PARC E80 experiment and show the current status of the new CDS development, especially about the Cylindrical Drift Chamber (CDC) and the gases for the CDC.

1. J-PARC E80 : The first step in systematic study of kaonic nuclei

The J-PARC E15 experiment confirmed the existence of the simplest kaonic nuclei K^-pp . The obtained binding energy was approximately 50 MeV. Kaonic nuclei have several interesting aspects;

- Kaonic nuclei, bound states between \overline{K} 's and N's, are formed by the strongly attractive $\overline{K}N$ interaction —> The best probe to understand $\overline{K}N$ interaction in the subthreshold region.
- Deeper binding energy than normal nuclei —> Could this suggest high dense matter?
- The system includes a real boson.
 —> Potential to gain new insight into the composition of matter
- " $\bar{K}NNN$ " should exist, but predicted binding energies and widths are widely spread depending on $\bar{K}N$ interaction models. Therefore, we will search for " K^-ppn " with the new spectrometer at first in the following way;

The new CDS

The new CDS has two advantages compared to the E15-CDS. It has **1.6 times larger solid angle (59% —> 93%)**

and 4 times higher neutron detection efficiency (3cm -> 12cm) than existing one.

Developing status

3.3m x 3.3m x 3.9m, ~108t in total

• Max. Field of 1.0T @ center

• Will be completed in FY2024

• NbTi/Cu SC wire, 98km in total

• 189A - 10V

We will measure all the decay particles from " K^-ppn ".

Then, the invariant mass of " K^-ppn " will be reconstructed. If it exists, we can obtain information about its binding energy and decay width.

- Fine Mesh PMT & MPPC array
- Neutron detection efficiency of 12~36%
- Intrinsic time resolution of ~80ps
- Will be fabricated in FY2024

2. Development status of CDC : Currently, we are mainly developing the CDC at J-PARC.

 The CDC consists of two aluminum end plates and a CFRP cylinder as the inner wall.

8,244 wires (The wire tension was applied so that the wire sag was less than 200 um.);

Wire type	Wire diameter	Wire material	Number of wires	Wire tension
Sense	$\phi 30 \mu { m m}$	Au-W	1,816	70 g
Filed	$\phi 80\mu{ m m}$	Be-Cu	$5,\!376$	$240~{ m g}$
Guard	$\phi 80 \mu { m m}$	Be-Cu	1,052	$240~{ m g}$
In total			$8,\!244$	1.67 tons

M2.6深さ8

シールド間全てに加工

Readout system

- Preamplifiers with ASDs (SONY CXA3653Q or ASAGI)
- HUL (multi-hit TDCs) or AMANEQ (Streaming DAQ)

Wire stringing work in HAYASHI-REPIC corp.

ASD

- A total of 6,428 field wires were connected using daisy chains.
- Signal readout side is being assembled.

• 15 layers of hexagonal cells with a typical drift length of 9 mm

Super- layer la	lovor	Wire	Radius	Cell width	Cell width	Stereo angle	Signal channels
	layer	direction	(mm)	(degree)	(mm)	(degree)	per layer
A1	1	X	190.5		16.7	0	
	2	X'	204.0	5.00	17.8	0	72
	3	X	217.5		19.0	0	
U1	4	U	248.5	4.00	17.3	-2.27	90
	5	U'	262.0		18.3	-2.39	
V1	6	V	293.0	3.60	18.4	2.42	100
	7	V'	306.5		19.3	2.53	
A2	8	X	337.5	3.00	17.7	0	120
	9	X'	351.0		18.4	0	
U2	10	U	382.0	2.40	16.0	-2.82	150
	11	U'	395.5		16.6	-2.92	
V2	12	V	426.5	2.25	16.7	2.96	160
	13	V'	440.0		17.3	3.05	
A3	14	X	471.0	2.00	16.4	0	180
	15	X'	484.5		16.9	0	

What gases will we use?

We used $Ar-C_2H_6$ (50-50) mixture for the E15-CDC. However, we want to use non flammable and low-cost gases because the CDC has 3 times the volume of the E15-CDC.

Transfered to

J-PARC

<u>The first data taking is expected in FY2026.</u> J-PARC E80 will open a new era in the study of kaonic nuclei!