J-PARC E15実験の解析の進展と今後の展望 J-PARC E15 Present & Future

- for J-PARC E15 collaboration -

J-PARC E15実験の解析の進展と今後の展望 J-PARC E15 Present & Future

- for J-PARC E15 collaboration -

J-PARC E15実験の解析の進展と今後の展望 J-PARC E15 Present & Future

- for J-PARC E15 collaboration -

岩崎雅彦

理化学研究所 開拓研究本部 岩崎中間子研究室

non-mesonic reaction channel @ $\theta_N = 0$?

Yukawa's theorem relativistic scalar boson field (Klein-Gordon Eq.)

$$\left\{\Box - \kappa^2\right\} U = 0 \quad \text{or}$$

$$\left\{ \left(\hat{E}^2 - \hat{\mathbf{p}}^2 \right) - m^2 \right\} \phi = 0$$
(find the constraints of the constraints of

$$\phi \propto \frac{\exp(-mr)}{r}$$
 for $E = 0$

Yukawa potential

Static point source wave function of total energy Zero $\phi \propto \exp(i(Et - \mathbf{p} \cdot \mathbf{x})) \text{ for } E \ge m$

plane-wave

Similar to Schrödinger but energy shifted by m

virtual pion as for nucleon glue (m-0 gives Coulomb!)

Meson in vacuum

$\phi \propto \frac{\exp(-mr)}{r}$ for E = 0 Yukawa potential = Coulomb for m = 0

 $\phi \propto \exp(i(Et - \mathbf{p} \cdot \mathbf{x}))$ for $E \ge m$ plane-wave solution

Meson in Atom (exotic) m~100 MeV/c²

Meson in Nucleus?

m ~ 100 MeV/c²

Subjects of global objective are ...

Nucleon (hadron) internal structure

~3 MeV/c² each 3 x 3 = ~10 MeV/c² in total

Why dose not lose energy (or mass) to 10 MeV/c²?

What is the nature of confinement?

Hadron (composite particle made of q or \overline{q}) is heavy, because ...

Vacuum is filled with scalar bosons spontaneous chiral symmetry braking introduce **qq : QCD higgs**

Nambu In fact, hadrons are mass-less, if no condensation occurs Hadrons looks to be heavy, because vacuum is in \overline{qq} *"superconducting* phase", and hadrons partially break the condensation.

Subject for discussion: J-PARC E15 Strong $\overline{K}N$ attraction! $\Lambda(1405) = \text{K-p}$ bound state? \rightarrow excellent introduction by Dr. Laura Tolós Key questions :

300 MeV

ا<<u>م</u> d`>ا

Chiral symmetry fully restored

normal nuclear

 $5\rho_0$

density

- Can kaon (boson) be a member of nuclei?
- Kaon properties change in nuclear media?
- Size of kaon bound state?

Could be a good probe for cold & dense QCD, to study the relation of hadron mass and χ-symmetry

<qq>as QCD-Higgs condensation

Kaonic nuclear bound state

Could be a good probe for dense & cold QCD

$\Lambda(1405)$ (Λ^*) in Lattice-QCD ~Real world ($m_{\pi} = 140 \text{ MeV/c}^2$) **Recent Lattice** QCD supports, 0.8 $\Lambda(1405) = p - K^-$ 0.6 $= (uud) \cdot (\overline{us})$ $|\langle state|E\rangle|^2$ mo then, one can embed $\frac{m_0}{2}\pi\Sigma$ **K** into nucleus πΣ πΣ ΚN 0.2 πΣ ΚN m_0 156 296 570 411 702 m_{π} (MeV)

J.M.M. Hall et al., Phys. Rev. Lett. 114(2015)132002.

"Kpp" observed in Apn final state

"Kpp" formation is clearly seen below M(Kpp) by IM(Λp) via K⁻³He $\rightarrow \Lambda p + n$ channel

i.e., $K^- + {}^{3}He \rightarrow {}^{\prime\prime}Kpp'' + n \rightarrow \Lambda p + n$

One can select "Kpp" by *q* separating from Quasi-elastic KN→KN & KNN→AN

F. Sakuma

K⁻³He \rightarrow πΣpn(Λ^{*}pn)

"Kp" & "Kpp" seems to be rather exclusive

$$\frac{Br("Kpp" \rightarrow \Lambda p)}{Br("Kpp" \rightarrow \pi \Sigma p)} > 1 (few times)$$

"Kpp" decay more strongly to non-mesonic channel

"Kp" and p separated Yield(IM("Kp"+p) > M(Kpp)) Yield(IM("Kp"+p) < M(Kpp)) Can be "Kpp" ("Kp" and p bound)</pre>

"Kp"(Λ*) is alternative to "Kpp" formation
"Kpp" formed efficiently (few % of "Kp"(Λ*) yield)

non-mesonic reaction channel @ $\theta_N = 0$?

T. Hashimoto

T. Hashimoto

Very forward N is consistent with $(\theta_N = 0)$

Quasi-Elastic KN→KN & KNN→ΛN

for forward N = *n* or *p* (both)

unlike to "Kpp" formation , QE channel (KN→KN & KNN→ΛN) is very forward peaking

confirmation of QE channel

@ very forward

confirmation of "KNN"

@ ambient q (larger ϑ_N)

first mesonic bound state "Kpp" identified

"Kpp" is seems to be deep and compact "Kpp" is more like "Kpp" rather than " Λ^* p" $\rightarrow \Lambda(1405)$ is more like "Kp" rather than " Λ^* "

Appendix

Is it mesonic nuclear bound state?

	Kaonic nuclei Kpp		Λ* p resonance Λ* hypernucleus		Hypernuclei: hyperon bound system	
below threshold	M(K+p+p)	yes	slightly below M(Λ*+p)	maybe?	M(Λ+#p+#n)	yes
Theoretical support for existence of pole	Chi.U + Phenomenological	yes	none?	not yet	phenomenological	yes
B.W. pole well separated from threshold	similar to Σ hypernucleus	yes	slightly below Μ(Λ*+p)	maybe not	weak decay only for Λ while $\Gamma_{\Sigma} >> \Gamma_{\Lambda}$	yes
decay channel open only in nuclei	none-mesonic: Kpp → Λ+p	yes & strong	none-mesonic: Λ*N→ NN	yes but relatively weak	none-mesonic-weak: ΛN→ NN	strong for heavy nuclei
branch suppression of mesonic decay as in vacuum	mesonic: Крр → Σ π р	yes much weaker	mesonic-weak- decay: Λ* → Σ π	no	mesonic-weak-decay: Λ → р π	yes / weak in heavy nuclei
none-resonant reaction channel above threshold	quasi-elastic K: KN → KN & Kpp → Λ+p	yes	KNN → Λ*N & Λ*p → Λ+p	N.A.	quasi-free : KN → Λ π	yes
Reaction form factor	~ 400 MeV/c :	compact?	N.A.	N.A.	~ 200 MeV/c :	~ nuclei size
variety	Kpp the first	1	N.A.	N.A.	from A = 3 ~	many

most likely, it is.

The other channels of interest

- K- 4He → "Kppn" + n → Λ pn + n
- K⁻ ⁶Li → "Kpα" + n → Λα + n

need to improve efficiency substantially, especially for n & γ