Latest results of a kaonic-nucleus search in J-PARC E15

Tadashi Hashimoto (RIKEN) for the J-PARC E15 collaboration

- *"K-pp"* searches and J-PARC E15
- Analysis status of E15^{1st}
 - semi-inclusive ³He(K⁻,n)
 - ► exclusive ³He(K⁻, ∧p)n

J-PARC E15 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j^{\$}}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567–0047, Japan 鱼
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🖛
- (c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽 🖡
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 🚺
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy 🛽
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy 🛽
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 🔸
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔸
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 🔸
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan 鱼
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔸
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305–0801, Japan 🔸
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153–8902, Japan 🔸
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan 🔹
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌
- (*) Spokesperson
- (\$) Co-Spokesperson

Kaonic nuclear bound state

Anti-kaon might be bound to a nucleus

due to the strongly attractive K^{bar}N interaction in I=0

3

the lightest kaonic nucleus **"K-pp" : [K**^{bar}(NN)_{I=1,S=0}]_{I=1/2}, J^π=0⁻

dense nuclei are predicted

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Kaon mass in nuclear medium?

T. Hashimoto@J-PARC workshop, Nov. 30, 2014

Current situation on "K-pp"

B(K⁻pp) [MeV] 200 100 0

large-angle proton: high-P_T(p)

- + Variety of few-body calculations
- + Two major experimental "observations" are still not understood well

New experimental results

K-pp binding threshold
B.E. ~100 MeV

In-flight K⁻ reaction on ³He

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

liquid ³He-target system

CDS

beam line spectrometer

neutron counter charge veto counter proton counter

Summary of E15 1st

24 kW * 4-day data taking in May, 2013 $\sim 5.3 \times 10^9$ on ³He

~ 1% of the approved proposal

Formation channel

Semi-inclusive ³He(K-,n)X

- + No significant bump structure in the deeply bound region
- + Excess below the threshold

Decay channel

Exclusive ³He(K-,Лp)n

- Deviation from the simple Phase space
- + Excess around the threshold ?

Formation channel Semi-inclusive ³He(K⁻, n)

T. Hashimoto et al., arXiv:1408.5637

@J-PARC workshop, Nov. 30, 2014

Background evaluation

T. Hashimoto@J-PARC workshop, Nov. 30, 2014

Background evaluation

What is the origin of the excess?

naively understood by attractive & absorptive potential

other possibilities are...

1. non-mesonic two-nucleon absorption: Λ(1405)n branch

- rather large cross-section ~ 5 mb/sr needed
- U.L. 1 ~ 10% of Λ^*n branch?

What is the origin of the excess?

naively understood by attractive & absorptive potential

other possibilities are...

1. non-mesonic two-nucleon absorption: Λ(1405)n branch

- rather large cross-section ~ 5 mb/sr needed
- U.L. 1 ~ 10% of Λ*n branch?

2. Loosely-bound "*K*-pp" state

- The excess corresponds to 1~2 mb/sr
 - ~ 10% of quasi-elastic peak
- Assumptions
 - Fully attributed to the K-pp state
 - isotropic decay $K^-pp \rightarrow \Lambda p/\Sigma p/\pi\Sigma p$

Comparison with theoretical spectra

Exclusive measurement (πΣN) is an important key for further study

Decay channel Exclusive ³He(K⁻, /p)n

Updated results will be presented @ PAC meeting (Dec. 4th)

Exclusive ³He(K⁻, Ap)n events

Ap invariant mass

improved event selection, contribution from 2NA + 2step.

T. Hashimoto@J-PARC workshop, Nov. 30, 2014

Apn kinematically complete measurement

Our final goal. But...

We definitely need more beam !!

Outlook - E15^{2nd} & near future plan@K1.8BR

Calibration run with H2-target

E31 pilot run with D2-target

• confirm the d(K⁻, n) Λ (1405) reaction by tagging the charged decay modes

► E15 2nd-stage physics run ← already approved !

- x10 statistics, ~10% of full proposal
- Exclusive analysis of $\pi\Sigma N$ decay
- Kinematically complete measurement of ³He(K⁻, Λpn)

► E17: K⁻He x-ray measurement with TES status report @ PAC meeting by S. Okada

- TES: novel cryogenic detector, ~5 eV FWHM@6 keV
- Feasibility test was successfully performed at PSI by HEATES collaboration
- K⁻d x-ray measurement with SDDs

talk by J. Zmeskal on Dec. 1

These experiments provide crucial information on the KbarN interaction

2016

T. Hashimoto@J-PARC workshop, Nov. 30, 2014

Summary of E15 1st

24 kW * 4-day data taking in May, 2013 ~ 5.3 x 10⁹ on ³He

~ 1% of the approved proposal

Formation channel

Semi-inclusive ³He(K⁻,n)X

+ No significant bump structure in the deeply bound region

+ Excess below the threshold
 2NA of Λ*n ? loosely-bound K-pp?

Decay channel

Exclusive ³He(K⁻,Λp)n

- + Deviation from the simple Phase space
- + Excess around the threshold ?

x10 statistics data will come next year !

