

F. Sakuma, RIKEN

for the J-PARC E15 collaboration

- Results of the E15 1st physics run
- Future prospects of E15
- Summary

「ストレンジネスを含む原子核の最近の展開」研究会 熱川ハイツ 2014 9/25-27

Experimental Principle of E15

A search for the simplest kaonic nucleus, K⁻pp, using ³He(*in-flight* K⁻,n) reaction

- two-nucleon absorption]
- hyperon decays

CAN be discriminated kinematiçally

E15 1st Stage Physics Run

- Production run of half the request (~15/30kW*week) was successfully accomplished.
 - ~1% of the approved proposal (270kW*4weeks)

	Primary-beam intensity	Secondary-kaon intensity	Duration	Kaons on target (w/ tgt selection)
March, 2013 (Run#47)	14.5 kW (18 Tppp, 6s)	80 k/spill	30 h	1.1 x 10 ⁹
May, 2013 (Run#49c)	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.3 x 10 ⁹

* production target: Au 50% loss, spill length: 2s, spill duty factor: ~45%, K/pi ratio: ~1/2
 * ~70% of beam kaons hit the fiducial volume of ³He target

• All detector systems worked well as designed.

Summary of E15 1st

Formation Channel

Semi-Inclusive ³He(K⁻,n)X

- No significant bump structure in the deeply bound region
- Excess below the threshold attributed to 2NA of Λ^* n?

Decay Channel

Exclusive ${}^{3}He(K^{-},\Lambda p)n$

- Cay Line. *Jusive* ${}^{3}He(K^{-}, \Lambda p)n$ Excess around the threshold ${}^{0}_{1}$ ${}^{+}$ be from 2NA of $\Lambda^{*}n$ ${}^{0}_{1}$ \checkmark Cannot be from 2NA of Λ^* n

Formation Channel, Semi-Inclusive ³He(K⁻,n)X

T.Hashimoto et al., arXiv:1408.5637, submitted to PLB

The tail structure is not due to "the detector resolution"

Spectrum below the Threshold

No significant bump-structure in the deep-binding region
 Statistically significant excess just below the threshold

FINUDA@DAΦNE

PRL94(2005)212303

A(stopped K⁻, Λ p)

2.2

M(pA)

2.3

[GeV/c²]

2.5

2.1

2.0

 Bump structure reported from other experiments was NOT seen in E15

9

• Excess near the threshold can be seen only in E15

U.L. of the deeply-Bound K⁻pp

0.5 - 5% cross section of quasi-free K scattering

Spectrum below the Threshold

No significant bump-structure in the deep-binding region
 Statistically significant excess just below the threshold

Excess = Elementary Processes?

The tail structure is NOT reproduced by well known processes

would be attributed to the imaginary part of the attractive K^{bar}N → Multi-NA? K⁻pp?

- Detector acceptance and all known K⁻N interactions are considered:
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:

$$- \sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n} (~150 \text{ mb})^3$$

Excess = $\pi\Sigma N$, $\pi\Sigma NN$, etc?

Each process is simulated with unreasonably large CS of 100mb

 \rightarrow contributions in the binding region are negligible ¹⁴

- $\Lambda N / \Sigma N$ branches are negligibly small
- $\Lambda(1405)$ n branches seems to reproduce the excess

- Λ (1405) shape is "simple BW with PDG values"

need rather large CS of ~5mb/sr

• Exclusive measurement of $\pi\Sigma N$ is needed for further study₁₅

Excess = Loosely-Bound K⁻pp?

- The excess is assumed to be fully attributed to the bound K⁻pp state
- $d\sigma/d\Omega(\theta_{lab}=0^\circ)$ of the excess is ~ 1 mb/sr

Excess =

Loosely-Bound K⁻pp?

- Detector acceptance and all known K⁻N interactions are considered:
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:
 - $\sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n}$ (~150mb)
- Simple assumptions:
 - − 2N abs.: K^{- 3}He \rightarrow Λ n p_s
 - $\sigma/d\Omega=1$ mb/sr, isotropic
 - K⁻pp prod.: K⁻ ³He → (K⁻pp)n
 - $d\sigma/d\Omega$ =1mb/sr, isotropic
 - K⁻pp → Λp(25%), Σ⁰p(25%), πΣp(50%)

Comparison between E15 and Calc.

Decay Channel, Exclusive ³He(K⁻,Λp)n

Exclusive ³He(K⁻,∧p)n events

- $K^{-3}He \rightarrow \Lambda(\Sigma^{0})$ pn events can be identified exclusively
 - # of $\Lambda(\Sigma^0)$ pn events: ~190
 - Σ^{0} pn contamination: ~20%

Dalitz plot

Dalitz plot

K-induced vs π -induced

[1] D. Gotta, etal., Phys. Rev. C 51. 2 (1995)
[2] P. Weber etal., Nucl. Phys A501 (1989) 765-800
[3] G. Backenstoss etal., Phys. Rev. Lett 55. 25(1985)

- π^- stopped [1]
 - 2nucleon absorption &FSI (50%/ π _{stopped}) are clearly seen
 - 3nucleon absorption <3% / π stopped
- π⁻ in-flight [2],[3]
 - 2nucleon absorption 0.85 \pm 0.17mb (266 MeV/c)
 - 3nucleon absorption 3.7 \pm 0.6 mb(220 MeV/c)
 - 2NA/3NA ~25%

Λp Invariant Mass

Comparison with Phase-Space

- total CS : ~200 μb (~ 0.1% of total cross section of K⁻³He)
 when phase-space distributions are assumed
- Excess around the threshold?

Comparison with Phase-Space

data cannot be reproduced by the phase-space?

Formation + Decay Channel, Kinematically Complete ³He(K⁻, Λpn)

Kinematically-complete measurement of ³He(K⁻, Λpn)

- Minimum momentum transfer of the ³He(K⁻,n) reaction
 → would enhance the S=-1 di-baryon production
- More than x10~100 beam time is required

Future Prospects of E15

The goal of the E15^{2nd}

- 1. confirm the spectral shape of the Λp invariant-mass by the exclusive measurement of ³He(K⁻, Λp)n
- 2. explore the neutron spectrum at $\theta_{lab}=0^{\circ}$ with the kinematically complete measurement of ³He(K⁻, Λ pn)
 - to extract more information on the K^{bar}N interaction

何を測ればK⁻pp解決? (個人的感想)

- E15実験の統計を上げる
 - 主目的である³He(K⁻,∧pn)完遂
 - energy scan ($p_K = 0.7^{-1.1} \text{ GeV/c}$)
 - Production = [FINUDA] (K⁻)+(pp)?
 - Production = [DISTO/E27] Λ^* p?
- Decay Channel
 - これまでの実験は主にΛp-channel測定
 - πΣN/ΣN-channel測定が重要であろう

 - 理論計算は???

К-рр К-ррп К-К-рр

スピン/パリティー

重い核

–1.37 🛋

• もう1つK⁻: K⁻K⁻pp

- Hassanvand et. al., Phys. Rev., **C84**(2011)015204.
- Barnea et. al., Phys. Lett., **B712**(2012)137.
- Maeda et. al., Proc. Jpn. Acad., B89(2013)418.
- 実験例: p^{bar} + ³He → (K⁻K⁻pp)+ K + K, K⁻K⁻pp→ΛΛ

Summary of E15 1st

Formation Channel

Semi-Inclusive ³He(K⁻,n)X

- No significant bump structure in the deeply bound region
- Excess below the threshold attributed to 2NA of Λ^* n?

Decay Channel

Exclusive ${}^{3}He(K^{-},\Lambda p)n$

- Cay Line. *Jusive* ${}^{3}He(K^{-}, \Lambda p)n$ Excess around the threshold ${}^{0}_{1}$ ${}^{+}$ be from 2NA of $\Lambda^{*}n$ ${}^{0}_{1}$ \checkmark Cannot be from 2NA of Λ^* n

The J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ

(c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea ቚ

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 📕

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 🔸

(j) Department of Physics, Kyoto University, Kyoto, 606–8502, Japan 🔸

(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ●

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 鱼

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan 🔸

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ●

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson