J-PARC E15 and future perspective

M.Iwasaki RIKEN / TITech

for J-PARC E15 Collaboration

- Introduction
- •E15 experiment
- Discussion on E15^{1st} engineering run
- Future possibility
- Conclusion

Embedding K⁻ in nucleus Motivation of J-PARC E15 ~ J-PARC E27

KEK 12GeV-PS E549 experimental setup

K⁻ reaction at-rest on ⁴He target

Proton Spectra with Charged Particle Trigger no definitive signal was found in the region of interest

The J-PARC E15 Collaboration

http://ag.riken.jp/J-PARC/collaboration/

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^a, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^j, M. Iio^c, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^c, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j‡}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^k, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, T. Yamazaki^{k,n}, H. Yim^t, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan .
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada I+I
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 🔅
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽 🖡
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan .
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan .
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan .
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305–0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany =
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan .
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany =
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 🔅
- (*) Spokesperson
- (\$) Co-Spokesperson

E15: KN interaction study by nuclear bound state

detect everything! \rightarrow event kinematics allows one particle missing

production

³He(K⁻, n) "K⁻pp"

by measuring K^- and n (forward)...

decay examples

$$\begin{array}{c} \text{``K}^{-}pp^{\prime\prime} \rightarrow \Sigma^{\pm} \pi^{\mp}p \\ \Sigma^{\pm} \rightarrow n \pi^{\pm} \end{array} \\ \\ \text{``K}^{-}pp^{\prime\prime} \rightarrow \Lambda p \\ \Lambda \rightarrow p \pi^{-} \end{array}$$

missing neutron can be identified by missing mass analysis

increase sensitive area allowing one particle missing

formation neutron

formation neutron

New data

Koike-Harada & DISTO DISTO

spectroscopic function

$B_K \sim 100 MeV$ and $\Gamma_K \sim 100 MeV$

DHW: A. Dote, T. Hyodo, and W. Weise, Nucl. Phys. A804, 197 (2008); Phys. Rev. C79, 014003 (2009).

YA: T. Yamazaki and Y. Akaishi, Phys. Lett. B535, 70 (2002); Proc. Jpn. Academy, Series B 83, 144 (2007)

SGM: N.V. Shevchenko, A. Gal, and J. Mares, Phys. Rev. Lett. 98, 082301 (2007); N.V. Shevchenko, A. Gal, J. Mares, and J. Revai, Phys. Rev. C76, 044004 (2007).

FINUDA: M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005).

DISTO

 $B_K {\sim} 100 MeV$ and $\Gamma_K {\sim} 100 MeV$

- only for Ap decay ch.

private communication - does not fit in KH scheme

easy to observe, if $d\sigma/d\Omega \gtrsim 1$ mb/sr

PID for CDS: Reaction vertex is in target volume

summary for present E15

E15^{1st} ~ <u>30kW*week</u> before long shutdown in 2013 1. to know the background processes to evaluate the realistic beam time for E15^{full} 2. 3. to present an information of the K^{bar}N interaction \rightarrow ³He(K⁻,n) spectrum below K^{bar}N threshold 4. to hunt for a hint of signal in Λ +p+n final states We are ready! Data seems to be very enthusiastic!

50 ~ 100 times more data only with E15^{1st}!

Beyond E15^{1st}

near future experiments E17: KN interaction by atom E31: study of Λ(1405) beyond E15^{1st} depends largely on result hint/ambiguous → E15^{full} \dot{c} clear signal? \rightarrow series of K-nucleus? can it be feasible only with few % beam of E15^{full}? another idea at J-PARC? charmonium in nucleus? X(1835) : glue-ball? / p-p^{bar} bound state? doorway to pbar nucleus? σ in nucleus? (QCD-higgs)

Charmonium in nucleus

Why charmonium?

Kaon-nucleon interaction Pion (meson) exchange J/ψ-nucleon interaction gluon exchange

 J/ψ embedded in nucleus will be best choice to understand nucleon interaction via gluons
(no meson exchange channel exist in J/ψ-N interaction)

One possibility : using anti-proton?

Well known production cross section (~ 311 nb for p^{bar}-p $\rightarrow J/\psi \rightarrow \mu\mu$ on pole energy : p^{bar} @ 4.07 GeV/c)

A-dependence of J/ψ production cross section about three months of study

Slow J/ ψ production reaction: $p^{bar}+^{4}He \rightarrow J/\psi+^{3}He$

"³He" forward emission : motivated by E15 d emission, α-cluster in nuclei

magic momentum @ 5GeV/c!

small elementary cross section at magic, unfortunately

momentum transfer is as small as < 200MeV/c near threshold (~300nb), though

We wish to open a new era of nuclear physics using J-PARC