

Search for Deeply-bound K-pp States in ³He(K⁻, Ap)n Reaction - Recent Results from J-PARC E15 Experiment

H. Outa for E15 collaboration

Objectives

Key questions :

- Hadron masses and χ-symmetry
- Can kaon be a member of nuclei?
- Kaon condensation in neutron star?

- Kaon properties change in nuclear media?

Search for Kaonic nuclear states

assuming $\Lambda(1405) = K^{-}p$ bound state ...

nuclear state search **K**-pp • simplest system $^{3}\text{He}(\text{K}^{-}, n) @ 1 \text{ GeV}/c$

Present "Kpp" Candidates @ B_K~100 MeV

Many objections exist, though... why no threshold $(\Sigma \pi p)$ effect seen? why no quasi-elastic K seen?

very deep ??

Situation of K⁻pp bound state

analyzed only kinematically but with well-identified FS

Published E15^{1st} data

(suspended by the earthquake)

Prog. Theor. Exp. Phys. 2016, 051D01 (11 pages) DOI: 10.1093/ptep/ptw040

Improving statistics via E15^{2nd} data What is the structure found in E15^{1st} data?

E15^{1st} E15^{2nd} 3 days \rightarrow 3 weeks w/ higher priority to Λp in CDS $K^- + {}^{3}He \rightarrow ? \rightarrow \Lambda + p + n$

 K^- +³He \rightarrow Y+n

~ 6 times more data for forward neutron

~ 30 times more data for Apn final state

E15^{1st} and E15^{2nd} spectra consistent?

$$\frac{d^2 \sigma_X}{dM_{inv,\Lambda p} dq} \propto \rho_3(\Lambda pn) \times \frac{(\Gamma_X/2)^2}{(M_{inv,\Lambda p} - M_X)^2 + (\Gamma_X/2)^2}$$

 $\frac{1}{\Gamma_X/2)^2} \times |\exp\left(-q^2/2Q_X^2\right)|^2,$

E15^{1st} and E15^{2nd} spectra consistent? YES! They are consistent!

E15^{1st} and E15^{2nd} spectra consistent? YES! They are consistent! E15^{2nd} spectrum does not allow single pole assumption

Dalitz Plot of Λpn

kinematical limit

- K⁻pp formation
- Is ³He point-like?

2NA process with spectator n_s / p_s

³He(K⁻, Λp)n: Angular Dependence of n in CM

³He(K⁻, Λ p)n: Angular Dependence of n in CM

in more detail as a clue to understand

³He(K⁻, Λ p)n: Angular Dependence of n in CM

two components exist? if that is the case,

unbound region : very forward peaking bit strongly depend to $\cos \theta$ lower Q_K preferred

bound region : forward peaking

weakly depend to $\cos \theta$

³He(K⁻, Λ p)n: Not like semi-inclusive spectrum, "quasi-free K" excluded by the final state: Λpn, but still need to ask … ructure can be explained with quasi-elastic K scatterin

through uncorrelated Λ(1405)p channel

Takayasu Sekihara^{1,*} Eulogio Oset², and Angels Ramos³ ¹Advanced Science Rate, apart of Setterg Rac, StoS, Tokai, Ibaraki, 319-1195, Japan ²Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain ³Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain *E-mail: sekihara@post.j-parc.jp

Prog. Theor. Exp. Phys. 2013, 00000 (27 pages) DOI: 10.1093/ptep/000000000

On the structure observed in the in-flight ³He $(K^{-}, \Lambda p)n$ reaction at J-PARC

Sekihara's calculation with QF-K and K-pp explains well the E15 $cos\theta_{cm}$ distributions But...

³He(K⁻, Λ p)n: comparison

THANKS

JAGIELLONIAN UNIVERSITY In Krakow

