Kaonic nuclei search via the in-flight (K⁻, n) reaction on helium-3

- 1. Introduction
- 2. J-PARC E15 experiment
- 3. Semi-inclusive ³He(K⁻, n)X analysis
- 4. Exclusive ³He(K⁻, Λp)n analysis
- 5. Future prospect
- 6. Summary

Tadashi Hashimoto (RIKEN Nishina Center)

J-PARC E15 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 🚺
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (j) Department of Physics, Kyoto University, Kyoto, 606–8502, Japan 🔸
- (k) Department of Physics, The University of Tokyo, Tokyo, 113–0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(\$) Co-Spokesperson

^(*) Spokesperson

Kaonic nuclear bound state

Anti-kaon might be bound to a nucleus

due to the strongly attractive K^{bar}N interaction in I=0

the lightest kaonic nucleus **"K-pp"**: [K^{bar}(NN)_{I=1,S=0}]_{I=1/2}, J^π=0⁻

dense nuclei are predicted

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Kaon mass in nuclear medium?

T. Hashimoto@MPMBI2015

"K-pp" candidates

Interpretations are still arguable...

$d(\pi^+, K^+)$ at 1.69 GeV/c (Inclusive spectrum)

Y* peak; data = 2400.6 ± 0.5(stat.) ± 0.6(syst.) MeV/c² sim = 2433.0 $^{+2.8}_{-1.6}$ (syst.) MeV/c² ``shift" = -32.4 ± 0.5 (stat.) $^{+2.9}_{-1.7}$ (syst.) MeV/c²

J-PARC E27

from Y. Ichikawa's slides @ strangeness workshop on 20150803

- ``K⁻pp''-like structure(coincidence)
- Broad enhancement ~2.28 GeV/c² has been observed in the Σ^{0} p spectrum.
 - Mass: 2275^{+17}_{-18} (stat.) $^{+21}_{-30}$ (syst.) MeV/ c^2 (BE: 95^{+18}_{-17} (stat.) $^{+30}_{-21}$ (syst.) MeV)
 - Width: 162 ⁺⁸⁷₋₄₅ (stat.) ⁺⁶⁶₋₇₈ (syst.) MeV

•
$$d\sigma/d\Omega_{K^{-}pp^{"}\to\Sigma^{0}p} = 3.0 \pm 0.3 \text{ (stat.)} ^{+0.7}_{-1.1} \text{ (syst.) } \mu \text{b/sr}$$

T. Sekihara, D. Jido and Y. Kanada-En'yo, PRC 79, 062201(R) (2009) • $\Gamma_{\Lambda p}/\Gamma_{\Sigma^0 p} = 0.92 \stackrel{+0.16}{_{-0.14}} \text{ (stat.) } \stackrel{+0.60}{_{-0.42}} \text{ (syst.). [Theoretical value: ~1.2]}$

- Sticking probability of the $\Lambda(1405)$ (Elementary: 36.9 μ b/sr)
 - $(d\sigma/d\Omega_{K^{-}_{TDD}})/(d\sigma/d\Omega_{\Lambda(1405)}) = 8.2\%$
 - $(d\sigma/d\Omega_{K^{-}pp^{''}\rightarrow\Lambda p})/(d\sigma/d\Omega_{\Lambda(1405)}) = 6.0\%$
 - − $(d\sigma/d\Omega_{(1405)}) > 14.2\%$ (for the Y^{*}: > 3.1%)
 - Theoretical value is about 1%.

<1 proton coincidence probability>

T. Hashimoto@MPMBI2015

 $d + \pi^+ - K^+ + p + \Lambda^+$

Theoretical calculations

Calcu	lated $K^- pp$ bin	ding energies <i>H</i>	3 and widths Γ (in	A.Gal, NPA914(2013)270				
	Chiral, ener	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]	
В	16	17-23	9–16	48	50-70	60-95	40-80	
Г	41	40-70	34-46	61	90-110	45-80	40-85	
[7] I. [8] A. [9] Y. [10] T. [11] N. [11] N. [12] Y. [12] Y. [13] S.	Doté, T. Hyodo, W Doté, T. Hyodo, W Ikeda, H. Kamano, Yamazaki, Y. Akai V. Shevchenko, A. V. Shevchenko, A. Ikeda, T. Sato, Phy Ikeda, T. Sato, Phy Wycech, A.M. Gre	V. Weise, Nucl. Pr V. Weise, Phys. Re , T. Sato, Prog. Th shi, Phys. Lett. B Gal, J. Mareš, Ph Gal, J. Mareš, J. 1 7s. Rev. C 76 (200 7s. Rev. C 79 (200 cen, Phys. Rev. C	200 150 100 A. Dote, T.Hyodo, W.We T.Yamaz 50 T.Barnea T.Gal, E.Z.Liv Y.Ikeda, H.Kamano, T.S 0 20 20 20 20 20 20 20 20 20	E27 E27 E27 DISTO E27 DIS	FINUDA OBELIX 120 140 B _{K⁻pp} [MeV]			

- All theoretical studies predict existence of the "K-pp"
- Experimental observation cannot be explained

Further experimental information with different reaction channels is important

In-flight K⁻ reaction on ³He

J-PARC hadron hall

J-PARC hadron hall

KI.8BR

T1 target

Features of K1.8BR

- Low momentum kaon beam
 - < 1.1 GeV/c
 - stopped K

Bird's eye pl

- Multi-purpose detector system
 - Neutron TOF counter
 - Beam analyzer
 - CDS

... (30Ge)

 Cryogenic target (liquid H₂ / D₂ / ^{3/4}He)

Primary proton beam: (as of May. 2013) - 24 kW, 30 Tppp with 6s repetition cycle 2s spill length, ~45% duty factor

KI.IBR

E27 d(π⁺,K⁺)

Experiments at K1.8BR

- All approved experiments investigate the K^{bar}N interaction
 - E15: Search for K⁻pp via ³He(K⁻, n)

• E31: Spectroscopic study of $\Lambda(1405)$ via d(K⁻,n)

- E17_(\rightarrow E62) : Kaonic ³He/⁴He atom X-rays
- E57: K-p, K-d X-rays

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

liquid ³He-target system neutron counter charge veto counter proton counter

CDS.

beam line

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

beam line

spectrometer

liquid ³He-target system neutron counter charge veto counter proton counter

Status of J-PARC E15

- Production run of ~1% of the approved proposal was successfully carried out in 2013.
- 2nd physics run will be performed in the autumn of 2015

	Exp. Target	Primary-beam intensity	Secondary- kaon intensity	Duration	Kaons on target (w/ tgt selection)
May, 2013 (Run#49c)	E15 ^{1st} ³ He	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.3 x 10 ⁹
Apr-May, 2015 (Run#62)	calibration H ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	73 h	3.7 x 10 ⁹
Apr-May, 2015 (Run#62)	alibration D ₂	26.5 kW (33 Tppp, 6s)	130 k/spill	53 h	2.8 x 10 ⁹
Autumn, 2015	E15 ^{2nd} ³ He	40 kW (50 Tppp, 6s)	200k/spill	26d	50x10 ⁹

J-PARC E15 1st stage experiment

Formation channel Semi-inclusive ³He(K⁻, n)

PTEP

Prog. Theor. Exp. Phys. **2015**, 061D01 (11 pages) DOI: 10.1093/ptep/ptv076

Letter

Search for the deeply bound K^-pp state from the semi-inclusive forward-neutron spectrum in the in-flight K^- reaction on helium-3

J-PARC E15 Collaboration

T. Hashimoto^{1,*,†}, S. Ajimura², G. Beer³, H. Bhang⁴, M. Bragadireanu⁵, L. Busso^{6,7},
M. Cargnelli⁸, S. Choi⁴, C. Curceanu⁹, S. Enomoto², D. Faso^{6,7}, H. Fujioka¹⁰,
Y. Fujiwara¹, T. Fukuda¹¹, C. Guaraldo⁹, R. S. Hayano¹, T. Hiraiwa², M. Iio¹²,
M. Iliescu⁹, K. Inoue¹³, Y. Ishiguro¹⁰, T. Ishikawa¹, S. Ishimoto¹², K. Itahashi¹⁴,
M. Iwai¹², M. Iwasaki^{14,15}, Y. Kato¹⁴, S. Kawasaki¹³, P. Kienle^{16,‡}, H. Kou¹⁵, Y. Ma¹⁴,
J. Marton⁸, Y. Matsuda¹⁷, Y. Mizoi¹¹, O. Morra⁶, T. Nagae¹⁰, H. Noumi²,
H. Ohnishi^{14,2}, S. Okada¹⁴, H. Outa¹⁴, K. Piscicchia⁹, M. Poli Lener⁹,
A. Romero Vidal⁹, Y. Sada¹⁰, A. Sakaguchi¹³, F. Sakuma¹⁴, M. Sato¹⁴, A. Scordo⁹,

T. Hashimoto@MPMBI2015

T. Hashimoto@MPMBI2015

Background evaluation

- 1. Deeply-bound region: no significant structure
- 2. Just below the K-pp threshold: excess of the yield

T. Hashimoto@MPMBI2015

What is the origin of the excess?

naively understood by attractive & absorptive potential other possibilities are...

1. non-mesonic two-nucleon absorption: \lambda https://www.ic.au.org/lineau.org

- rather large cross-section ~ 5 mb/sr
- U.L. of deeply bound states: $1 \sim 10\%$ of Λ^*n branch?

What is the origin of the excess?

naively understood by attractive & absorptive potential

other possibilities are...

1. non-mesonic two-nucleon absorption: Λ(1405)n branch

- rather large cross-section ~ 5 mb/sr
- U.L. of deeply bound states: 1 ~ 10% of Λ*n branch?

2. Loosely-bound "*K*-pp" state

- The excess corresponds to 1~2 mb/sr
 - ~ 10% of quasi-elastic peak
- Assumptions
 - Fully attributed to the K-pp state
 - isotropic decay $K^-pp \rightarrow \Lambda p/\Sigma p/\pi\Sigma p$

Experimental spectrum is similar to theoretical predictions with a loosely-bound state. ($\Lambda(1405)$ production is not considered)

Decay channel Exclusive ³He(K⁻, /p)n

PTEP

Prog. Theor. Exp. Phys. **2015**, 00000 (12 pages) DOI: 10.1093/ptep/000000000

Search for S=-1 di-baryonic state on K^-pp threshold

Y. Sada¹, S. Ajimura¹, G. Beer², H. Bhang³, M. Bragadireanu⁴, P. Buehler⁵,
L. Busso^{6,9}, M. Cargnelli⁵, S. Choi³, C. Curceanu⁷, S. Enomoto⁸, D. Faso^{6,9},
H. Fujioka¹⁰, Y. Fujiwara¹¹, T. Fukuda¹², C. Guaraldo⁷, T. Hashimoto¹¹,
R. S. Hayano¹¹, T. Hiraiwa¹, M. Iio⁸, M. Iliescu⁷, K. Inoue¹³, Y. Ishiguro¹⁰,
T. Ishikawa¹¹, S. Ishimoto⁸, T. Ishiwatari⁵, K. Itahashi¹⁴, M. Iwai⁸, M. Iwasaki^{15,14},
Y. Kato¹⁴, S. Kawasaki¹³, P. Kienle¹⁶, H. Kou¹⁵, Y. Ma¹⁴, J. Marton⁵,
Y. Matsuda¹⁷, Y. Mizoi¹², O. Morra⁶, T. Nagae¹⁰, H. Noumi¹, H. Ohnishi¹⁴,
S. Okada¹⁴, H. Outa¹⁴, K. Piscicchia⁷, M. Poli Lener⁷, A. Romero Vidal⁷,
A. Sakaguchi¹³, F. Sakuma¹⁴, M. Sato¹⁴, A. Scordo⁷, M. Sekimoto⁸, H. Shi¹⁸,
D. Sirghi¹⁸, F. Sirghi¹⁸, K. Suzuki¹⁸, S. Suzuki⁸, T. Suzuki¹¹, K. Tanida³,
H. Tatsuno⁷, M. Tokuda¹⁵, D. Tomono¹⁴, A. Toyoda⁸, K. Tsukada¹⁸,
O. Vazquez Doce^{7,19}, E. Widmann⁵, B. K. Wuenschek⁵, T. Yamaga¹³,
T. Yamazaki^{11,14}, H. Yim²⁰, Q. Zhang¹⁴, and J. Zmeskal⁵

<u>Λp identification</u>

PID by TOF and track curvature

missing neutron ID

- Simultaneous fit of M.M.(Λp) & I.M.(Λp)
- Events with π are dominant
- ► Apn ~ 200 events
 - contamination of Σ⁰pn: ~20%

Exclusive spectrum

Comparison with Phase space

- ► 2NA reaction $K^-+^{3}He \rightarrow \Lambda + p + n_{s}$ seem to be very weak
- 2NA position

- c.f.) stop K⁻ reaction: $10 \sim 20\%$ of total events
- ► 3NA reaction $K^-+^{3}He \rightarrow \Lambda+p+n$ seem to exist
 - ~ 40 μ b, (10⁻⁴~10⁻³ of K⁻+³He total cross section)
- Enhancement around the K⁻pp threshold

Kinematics of the structure

 $\cos\theta_{\Lambda}$ = 1 relative to the Λp frame

- Iow-momentum transfer is enhanced
- isotropic decay?

Assuming Breit-Wigner

χ²-test with Breit-Wigner and 3NA backgrounds

- assume isotropic Λp decay as a function of mass and width
- ► ~ 15 µb, a few µb/sr at θ_n =0
 - · not contradict with the forward neutron analysis
 - < 1~2 mb/sr excess in semi-inclusive neutron spectrum
 - theories suggest K-pp→Λp << K-pp→πΣp

$\Lambda(1405)p_s \rightarrow \Lambda p \text{ conversion}$

- Difficult to distinguish from the "K-pp" experimentally.
- Should be compared with quasi-free Λ*N
 - < 5 mb/sr from forward neutron analysis</p>
 - ~ 0.5 mb/sr from theoretical calc. on K-d
 - a few percent conversion probability?

further studies are ongoing...

Outlook - E15^{2nd} & near future plan@K1.8BR

E15 2nd-stage physics run

- x10 statistics, ~10% of full proposal
- Exclusive analysis
- Kinematically complete measurement of ³He(K⁻, Λpn)
- E31 pilot run (D2-target)

► E17→E62: K⁻He x-ray measurement with TES

- TES: novel cryogenic detector, ~5 eV FWHM@6 keV
- Feasibility test was successfully performed at PSI

► E57: K⁻d x-ray measurement with SDDs

2015

2016

2017 ~

Kinematically complete measurement

- Minimum momentum transfer of the ³He(K⁻,n) reaction
 - \rightarrow would enhance the S=-1 di-baryon production
- x100 beam time is required

T. Hashimoto@MPMBI2015

T. Hashimoto@MPMBI2015

<u>Summary</u>

Deeply-bound region

- bump-structure reported by FINUDA/DISTO/E27, has NOT been observed
- reaction channel dependence?

Around the threshold

- Some structure has been seen both in formation- and decaychannel
- Hint of S=-1 di-baryon state?
- explained by A(1405)?

x10 statistics data coming soon !

 exclusive analysis to reveal the origin of the sub-threshold structure

nIM_MM_Lp_Lpn_wocut

NC efficiency evaluation

Semi-Inclusive ³He(K⁻,n/p)X M.M. spectrum

³He(K⁻,p) spectrum looks similar to (K⁻,n)