J-PARC K1.8BRにおける ³He(K⁻,∧pn)反応を用いての K⁻多核子吸収の研究

京都大学/理研 佐田優太 For the E15 collaborations 2014物理学会第69回年次大会

Contents

- Introduction
 - E15 experiment
 - ³He(K⁻, Λ p)n reaction
 - Multi-nucleon absorption
- Detector performance
 - Track efficiency & PID
- Analysis for ³He(K⁻, Λ p)n reaction
 - Tagged $\Lambda p \rightarrow pp\pi$ events with CDS
 - $^\circ\,$ Estimation of Λ pn final state events
 - М.М of ³He(К-,Лр)Х
 - Dalitz'plot of Λ pn final state evets
 - I.M. of Λ p@ ³He(K-, Λ p)n
- Summary

E15 experiment

in-flight ³He(K⁻, n) reaction & its exclusive measurement

=> Search for KNN bound states both via formation & Decay

What can we learn from Λp invariant mass

- If Kpp decays to Λp final state, Kpp can be derived Kpp bound state from Λp invariant mass (FINUDA exp)
- FINUDA applied stopped K⁻ reaction
 =>tagged back-to-back Λp

E15 exp in-flight K⁻ on ³He target
Does 2/3 nucleon absorption exists?
Λpn π multi-body?

 =>it is important to identify all particles in final state

- FINUDA Exp. @ DA Φ NE
- ⁶Li, ⁷Li, ¹²C target stop *K*-
- Λp invariant mass

Multi-Nucleon absorption@³He target Measurement In-flight K- multi-nucleon absorption is NEW!!

- π^{-} stopped [1]
 - Clearly seen 2nucleon absorption &FSI (50%/π _{stopped})
 - **3n**ucleon absorption <3% $/\pi_{stopped}$
- π^{-} in-flight [2],[3]
- 2nucleon absorption 0.85 \pm 0.17mb (266 MeV/c)
- 3nucleon absorption 3.7 \pm 0.6 mb(220 MeV/c)
- 2NA/3NA ~25%

[1] D. Gotta, etal., Phys. Rev. C 51. 2 (1995)
[2] P. Weber etal., Nucl. Phys A501 (1989) 765-800
[3] G. Backenstoss etal., Phys. Rev. Lett 55. 25(1985)

CDC (15 layers, 1816ch) + CDH (36 seg) + 0.7T solid angle: 60% of 4π

1st Stage Physics Run

Jun.2006	proposed and approved @ 1 st PAC		
Feb 2009	first beam transportation to K1.8BR		
Mar.11 2011	the earthquake	1 st physics run (May 2013)	
May 2012	completion of spectrometer construction 1 st physics run	duration	Kaon on target
March &		88 hours	5.0 x 10 ⁹
May 2013	8		lata in tha 1st
May.23 2013	the accident (run was stopped)	 Accumulated data in the 1st stage physics run ~1% of approved proposal 	

Λp event selection

Event tagged by $pp\pi$ - @CDS

- 2. Requested no forward charged particle
- 3. Define Λ decay pair from the distance of closest approach (DCA) between π and p

=>All DCA<1cm (DCA(Λp)<2cm)

Decomposition of "missing neutron" region

Summary

We accumulated the data of 1st physics run of the J-PARC E15 experiment

~5x10⁹ kaons on ³He

Preliminary results has been presented

Exclusive ${}^{3}\text{He}(K^{-},\Lambda p)n_{\text{missing}}$

=>indicates that 3 nucleon absorption reaction is dominant?

- 2 nucleon absorption reaction is not seen clearly
- With assumption all events come from $\Lambda pn\,$ phase space uniformly , cross section is evaluated to be ~210 μb
- indicates structure around K+p+p threshold

Further analyses are under way

Detailed analysis of exclusive Λpn events

- Finalize Λ/Σ rate in selected n missing
- Finalize 3 nucleon absorption reaction cross section
- 2NA reaction upper limit

There remains a statistically significant excess !!

c2dalitzIM

M.M & I.M of 3 He(K⁻, Λ p)X

- Fitting 3NA/2NA + π events produced MC
- =>2NA events are very few

cosOA(CM) of $\Lambda p {}^{3}He(K^{-},\Lambda p)n_{missing}$

Momentum(CM) of $\Lambda p {}^{3}He(K^{-},\Lambda p)n_{missing}$

