K中間子クラスターと高密度物質への展開

K⁻ppクラスター実験研究の最前線

Takumi Yamaga

Research Center for Nuclear Physics, Osaka university

◆ Studies of the *K*[−]*pp* cluster

Overview of the E15 experiment

Preliminary results on E15 new data

2017.03.20 **T. Yamaga** 2

3

Situation of *K*⁻*pp* bound state

Theoretical calc.

Experimental studies on K⁻pp cluster

J-PARC E15 experiment

Momentum transfer is smaller than other experiments.

• Λpn final state is identified.

Experiment	Reaction	Momentum transfer (MeV/ c)	
FINUDA	$\left(K^{-}_{stopped},\Lambda p ight)$	0	2NA background
KLOE	$\left(K^{stopped},\Sigma^0p\right)$	0	ZIVA Dackground
DISTO	$pp \to K^+ \Lambda p$	300 - 400	$N^* \rightarrow \Lambda K^+$ decay
HADES	$pp \to K^+ \Lambda p$	500 - 700	iv fin accay
LEPS	$p(\gamma, \pi^- K^+)X$	300 - 600	
J-PARC E27	$d(\pi^+, K^+) X_{\Lambda p / \Sigma^0 p}$	500 - 700	
J-PARC E15	$(K_{in-flight}^{-},\Lambda p)n$	200 - 300	

2017.03.20

T. Yamaga

J-PARC E15 experiment

- K⁻pp search with
 (K⁻, n) reaction
 - We have reported the structure around K⁻pp mass threshold in ³He(K⁻, Λp)n reaction
- Study with higher statistics data

J-PARC E15 Experiment

Searching for K⁻pp

3 He(K^{-} , Λp)n Analysis

Measurement

Analysis for the ${}^{3}\text{He}(K^{-},\Lambda p)n$ reaction

• Final spectrum of Λp invariant-mass

- Continuum contribution
- Peak structure around K⁻pp mass-threshold
 - » Contribution from other material can not make the structure
 - » The peak structure can not seen in "Mixed event analysis"

8

$$\cos \theta_n^{CM} = \frac{\mathbf{p}_{K^-}^{CM} \cdot \mathbf{p}_n^{CM}}{|\mathbf{p}_{K^-}^{CM}| \cdot |\mathbf{p}_n^{CM}|}$$

Continuum contribution

Distributed widely

Peak structure

• Only forward emission angle region

9

Fitting the spectrum

Pickup the peak structure

+ $0.7 < \cos \theta_n^{CM} < 1.0$ + $0.0 < \cos \theta_n^{CM} < 0.7$

M(K⁻pp)

Results and Discussion

Fitting the spectrum

- Pickup the peak structure
 - Peak = 0.7 < $\cos \theta_n^{CM}$ < 1.0 $-0.47 \cdot (0.0 < \cos \theta_n^{CM} < 0.7)$

350

T. Yamaga

- Fitting the spectrum including Σ⁰pn
 - Solid : Λpn
 - **Dotted** : Σ⁰pn
- Mass position and width
 - » M ~ 2330 MeV/c²
 » Γ ~ 70 MeV/c²
 - Mass position does not changed.
 - Width is slightly changed to smaller value.

$$\begin{array}{c} 0.7 < \cos \theta_n^{CM} < 1.0 \\ \\ \end{array}$$
Applying the fitting for,

$$\begin{array}{c} 0.95 < \cos \theta_n^{CM} < 1.00 \\ 0.90 < \cos \theta_n^{CM} < 0.95 \\ 0.85 < \cos \theta_n^{CM} < 0.95 \\ 0.85 < \cos \theta_n^{CM} < 0.90 \\ 0.80 < \cos \theta_n^{CM} < 0.85 \\ 0.75 < \cos \theta_n^{CM} < 0.80 \end{array}$$

To check the peak position and width of peaks below and above the threshold

14

Peak positions

- Lower peak (Breit-Wigner) : constant
- **Higher peak (Gaussian) : depends on** $\cos \theta_n^{CM}$

Assuming

The "QF" peak position can be estimated by,

•
$$M_{QF} = 2M_p + M_{K^-} + \frac{q^2}{2M_{K^-}}$$

» q : momentum transfer

» M_{K^-} : mass of Kaon

Peak positions

- K^-pp bound system
 - Quantum number
 - Strangeness : S = -1
 - Baryon number : B = 2

The lower peak could be K⁻pp bound state

Comparison with previous experimental results

Deep (B.E.:100 MeV) state is not observed.

Peak position and width close to theoretical works.

Comparison with theoretical calculation

- Spectrum shape is similar.
- Peak position is slightly deep in the Exp.

Summary

- $IM(\Lambda p)$ spectrum in the ${}^{3}He(K^{-},\Lambda p)n$ reaction has two peaks below and above the Kpp threshold.
- The peaks can be fitted by Breit-Wigner and Gaussian distribution.
 - Assuming that the Breit-Wigner resonance for the lower peak, the mass and width are found to be...
 - » Mass : ~2330 MeV/c^2
 - » Width : $\sim 70 MeV/c^2$
 - These values will be finalized in near future.

Future plan of E15

Higher statistics

• J^{π} study

Neutron detection

► *K⁻ppn* cluster study

Gamma ray detection

• $\pi \Sigma N$ decay mode study

Thank you for your attention ~ The E15 collaboration ~

S. Ajimura^a, G. Beer^b, C. Berucci^e, H. Bhang^c, M. Bragadireanu^d, P. Buehler^e, L. Busso^{f,g}, M. Cargnelli^e, S. Choi^c, C. Curceanu^h, S. Enomotoⁿ, D. Faso^{f,g}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^h, T. Hashimoto^m, R. S. Hayano^k, T. Hiraiwa^a, M. Iioⁿ, M. Iliescu^h, K. Inoue^a, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimotoⁿ, T. Ishiwatari^e, K. Itahashi^m, M. Iwaiⁿ, M. Iwasaki^{o,m*}, K. Kanno^k, K. Kato^j, Y. Kato^m, S. Kawasakiⁱ, P. Kienle^p, T. Kim^o, H. Kou^o, Y. Ma^m, J. Marton^e, Y. Matsuda^q, Y. Mizoi^l, O. Morra^f, T. Nagae^{j†}, H. Noumi^a, H. Ohnishi^{m,a}, S. Okada^m, H. Outa^m, K. Piscicchia^h, A. Romero Vidal^h, Y. Sada^a, A. Sakaguchiⁱ, F. Sakuma^m, M. Sato^m, A. Scordo^h, M. Sekimotoⁿ, H. Shi^h, K. Shirotori^a, D. Sirghi^{h,d}, F. Sirghi^{h,d}, K. Suzuki^e, S. Suzukiⁿ, T. Suzuki^k, K. Tanida^u, H. Tatsuno^v, M. Tokuda^o, D. Tomono^a, A. Toyodaⁿ, K. Tsukada^r, O. Vazquez Doce^{h,s}, E. Widmann^e, B. K. Wuenschek^e, T. Yamagaⁱ, T. Yamazaki^{k,m}, H. Yim^t, Q. Zhang^m, and J. Zmeskal^e (J-PARC E15 Collaboration)