JPS Meeting September 25-28, 2015

3He(in-flight K-,n)反応を用いた 反K中間子束縛状態探索のための 水素・重水素標的を用いた素過程解析

Takumi Yamaga

Research Center for Nuclear Physics, Osaka university

For the J-PARC E15 collaboration

September 27, 2015

Kaonic nucleus

• Bound state of \overline{K} and Nucleus

• Result from strongly attractive $\overline{K}N$ interaction

Y.Akaishi & T.Yamazaki, PLB535, 70(2002).

3

Recent status of $\overline{K}NN$

There are many Theoretical/Experimental results.

J-PARC E15 experiment

J-PARC E15 experiment

Result of E15-1st :: Formation channel

At least one charged track in CDS is required.

CDS acceptance (A_{CDS}) is not corrected.

• Semi-Inclusive ${}^{3}He(K^{-}, n)X$ missing mass spectrum

- Sub-threshold excess is observed
- NO structure is observed in deeply-bound region

Result of E15-1st :: Decay channel

• Missing neutron is selected in $MM(\Lambda p)$.

• Λp invariant mass spectrum in $\Lambda p''n''$ final state

- Structure is observed below K-pp threshold.
 - S = -1 di-baryon state?

The result will be fixed quite soon.

H2/D2 data analysis

To investigate a contribution of elementary process

- $p(K^-, n)$
- $n(K^-, n)$
- Comparison of the H2, D2 and 3He data

→ Today's talk

H2/D2 data analysis

• Semi-inclusive $p/d(K^-, n)$ "X" missing mass spectrum

Comparison of the H2/D2 and 3He data

- Semi-inclusive neutron missing mass spectrum
 - Sub-threshold excess in 3He is similar to that in D2.
 - Y^{*} production may contribute to the excess below the threshold.

Summary

E15-1st result

Excess below the threshold is observed in Formation/Decay channel analysis.

H2/D2 data analysis

- Comparison of H2/D2 and 3He data
- Sub-threshold excess is observed in D2 data.
 - $\Sigma(1385)/\Lambda(1405)$ contribution
- Excess in 3He comes from Y*N contribution?
 - Exclusive analysis is desired.
 - Λpn, πΣNn

The E15-2nd physics run will start this October.

Exclusive analysis results with higher statistical data will be performed. (x10)

Thank you for your attention

\sim The E15 collaboration \sim

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{i[§]}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567–0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada
- (c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea ቚ
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 📕
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy 🛽
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔹
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💻
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌

Deeply-bound region

Deeply-bound region

Deeply-bound region

Semi-inclusive ${}^{3}He(K^{-},n)"X"$ spectrum

Upper limit

Dalitz plot

Assuming a Breit-Wigner

2-step reaction

2-step reaction

C) 2NA followed by $\Lambda(1405)''N'' \rightarrow \Lambda N$

- The structure is NOT explained by any 2-step reactions
- Other possibilities
 - $K^{*}pp^{*} \rightarrow Ap cusp?$
 - too broad (~100MeV/c²) if the structure is attributed to the cusp
 - Shift of $\Lambda(1405)$? "40MeV/c²
 - S=-1 di-baryon??

Semi-inclusive ${}^{3}He(K^{-},n)"X"$ spectrum

Semi-inclusive ${}^{3}He(K^{-},n)"X"$ spectrum

Comparison with other experiments

LEPS/SPring-8 and HADES/GSI also reported NO structure

T. Yamaga

Λp invariant mass spectrum in ${}^{3}He(K^{-},\Lambda p)$ "*n*" reaction

• Missing neutron is selected in $MM(\Lambda p)$.

Λp invariant mass spectrum in ${}^{3}He(K^{-},\Lambda p)$ "*n*" reaction

Missing neutron is selected in $MM(\Lambda p)$.

Decay channel analysis

- Ap invariant mass spectroscopy in ${}^{3}He(K^{-}, \Lambda p)$ "n" reaction
 - Select missing neutron in MM(Λp)

Λp invariant mass spectrum in ${}^{3}He(K^{-},\Lambda p)$ "*n*" reaction

Missing neutron is selected in $MM(\Lambda p)$.

Summary

Formation channel

- ► ³He(K⁻, n)"X" missing mass spectrum
 - Excess below the threshold is observed.
 - NO structure in deeplybound region
- Decay channel
 - Λp invariant mass spectrum
 - Structure is observed below K-pp threshold.

The experiment will resume this October.

30

Result of E15-1st

Formation channel

- ► ³He(K⁻, n)"X" missing mass spectrum
 - Excess below the threshold is observed.
 - NO structure in deeplybound region
- Decay channel
 - Λp invariant mass spectrum
 - Structure is observed below K-pp threshold.

