Experimental search for K^-pp deeply bound state via in-flight ³He (K^- , n) reaction at J-PARC K1.8BR

Shingo Kawasaki for the J-PARC E15 collaboration RCNP, Osaka University

J-PARC E15 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j^{\$}}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🙌
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 📕
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 🔹
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔸
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ●
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 🔹
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan 🔹
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan 🔸
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💻
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson

Contents

- Introduction
- E15 experiment @ J-PARC K1.8BR
- Semi-inclusive study of ${}^{3}He(K^{-}, n)$
- Search for K-pp in Λpn final state
- Summary

K-pp deeply bound state

• $\overline{K}N$ interaction of I=0 shows strongly attractive.

Based on the data of experiment of X ray from Kaonic atom

 \rightarrow Kaon deeply bound to nucleus ?

Experimental suggestion of K-pp

Theoretical calculation suggest various B.E and F due to lack of information on KbarN int. below KbarN threshold

Experimental information of K-pp is necessary

K^-pp measurement via ${}^3\mathrm{He}\left(K^-,n ight)$ E15 experiment @ J-PARC K1.8BR

- Measurement of the formation by missing mass 3 He (K^{-} , n)X
- Ap final state is obtained exclusively

K1.8BR spectrometer [Jun. 2012]

Neutron spectrum measured by NC

Semi-inclusive study of ${}^{3}He(K^{-}, n)$ ${}^{3}He(K^{-}, n)X$ missing mass

- The QF peak around 2.4 GeV/ c^2 can be seen.
- Clear peak structure does not appear in the deeply bound region.

Kaon reaction with single-nucleon

Contamination of elementary Σ process in below the threshold $\overline{K}NN$

• Σ contributions and background are estimated.

Upper limit of K-pp \rightarrow Ap cross section for a deeply bound region

 The Upper limit is much smaller than the cross section of quasi-elastic ~14 mb/sr

11

Exclusive ${}^{3}He(K^{-},\Lambda p)n$

Search for K-pp $\rightarrow \Lambda p \rightarrow p\pi^-p$

 $^{3}He(K^{-},\Lambda p)X$ missing mass

Invariant mass Λp

- Simulated distribution from 3NA process is overlaid
- The shape cannot be explained by 3NA
- Statistics are not enough

We require 2^{nd} physics run 10 times as data as $1^{st_{13}}$

Summary

- The Preliminary result of the E15 1st physics run data is presented.
- Inclusive ${}^{3}He(K^{-},n)$
 - No significant peak structure is observed in the deeply bound region.
 - \rightarrow Mass-dependent upper limit of K-pp->Ap cross section
 - The Upper limit is much smaller than $\sigma(KN \rightarrow KN) \sim 14 \text{ mb/sr}$
- Exclusive ${}^{3}He(K^{-},\Lambda p)n$
 - Λp invariant mass spectrum is obtained.
 - The spectrum shape is hardly explained by 3NA.
- 2nd run will be allocated.
 - 10 times more data

Back Up

Comparison with theoretical calculation for around the threshold

T.Koike and T.Harada. , PLB652 (2007) 262

Cross section in all bound region ~mb/sr
→ Similar to the all excess of the data
Cross section in the deeply bound region ~mb/sr
→ One order larger than upper limit

Search for K-pp in A+p+n final state

- Energy correlation in Dalit plot can separate K-pp and 2NA .
- The data plots seem scattered in allowed region almost uniformly.
- \rightarrow 3NA is dominant.
- \rightarrow 2NA is hardly reflected

Cross section of K-pp $\rightarrow \Lambda p, \Sigma^0 p, (\pi \Sigma)^0 p$ ~1mb/sr

18

• CDS has no acceptance to π^- in

 $\begin{array}{c} K^-n \to \pi^- \Lambda \\ \Lambda \to \pi^0 n_{Forward} \end{array}$

- Many theories predicted the K-pp bound state with various B.E and Γ.
- Few experiments claimed observation the K-pp state.
- We need more experiment data in another way to distinguish all background process.

