Search for deeply-bound K^{bar} -nuclear states via the ³He(inflight-K⁻,n) reaction at J-PARC

Shun ENOMOTO (RCNP, Osaka Univ., Japan) For the J-PARC E15 collaboration

> Hadron2013@Nara Nov. 8, 2013

Contents

- Introduction
 - Kaonic nuclei

J-PARC E15 experiment

- Setup
- Detector performance
- Preliminary results
 - Hyperon resonance
 - Semi-inclusive 3He(K-, n)X spectrum
 - Exclusive 3He(K-, Λpn) spectrum
- Summary

Introduction

DISTO

Motivation : what will happen when anti-kaon is embedded in nucleus.

Does the simplest Kaonic nuclei "K-pp" exist? ✓ How much deeply bound ?

Y. Akaishi & T. Yamazaki, Phys. Rev. C65 (2002) 044005. Y. Akaishi & T. Yamazaki, Phys. Lett. B535 (2002) 70.

J-PARC E15 Experiment

- Search for K⁻pp bound state by using In-flight ³He(K⁻,n) Reaction.
- Measuring both I. M. and M. M. of "K⁻pp".

the completed K1.8BR spectrometer [Jun. 2012]

Cylindrical Detector System (CDS)

Cylindrical Detector System(CDS)

CDC: Drift Chamber CDH: Hodoscope Magnet: 0.7T

Cover 60% of the solid angle.

Design performance was achieved!!

Forward neutral particle

Neutron Counter

- Neutron momentum is determined by TOF method.
- Good S/N of ~100@QF neutron peak (Set threshold to 5 MeVee).
- $\sigma_{TOF} \sim 160$ ps → $\sigma_{M.M.} \sim 10$ MeV/c² at the region of interest.

J-PARC E15 1st stage physics run

Accumulated data

✓ w/ liquid helium-3 target: ~1% of original proposal

period	Primary beam intensity	duration	Kaon on target
May, 2013	24kw (30Tppp, 6s cycle)	88 hours	4.0×10 ⁹

Preliminary result

- 1. Hyperon production study
 - Λ(1520) spectrum
- 2. Semi-inclusive analysis
 - ³He(K-,n) missing mass spectrum
- 3. Exclusive analysis
 - ³He(K-, Λpn) exclusive

Preliminary result : Hyperon production

Λ(1520) production

Semi – inclusive ³He (K-, n) missing mass Excl<u>usive ³He</u> (K-, Λpn)

Hyperon production on nuclear target provides the important information on the Y*N interaction.
There are no data using nuclear target and this energy region (K⁻:1GeV/c).

Preliminary result : Hyperon production

Λ(1520) production

$\checkmark \Lambda(1520)$ peak is clear seen.

BG: Kp->nπK⁰s(non-resonant reaction) ✓ Peak position is consistent with PDG.

Cross section .

• Consistent with old data at the same order level.

• Study of other decay channels is in progress.

Semi – inclusive ³He(K-, n) missing mass Exclusive ³He (K-, Λpn)

Semi-Inclusive ³He(K⁻,n)

Semi – inclusive ³He (K-, n) missing mass Exclusive ³He (K-, Λpn)

Missing Mass of ³He(K⁻, Λp)

We would like to carry out high statistical experiments !

We would like to carry out high statistical experiments !

statistical experiments !

Selected **neutron missing** mass peak.

- •Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- ✓ It seems 3N-abs(∧pn) exists

☑2N-abs is almost nothing.

 \square can not see Σ-Λ conversion line?

"Λpn" w/ forward n in the NC is a few events.

We would like to carry out high statistical experiments !

will be confirmed in I. M. of Λp w/ missing n.

³He(K⁻, Λpn) Result

Λp invariant mass

It seems that 2N abs is very weak. 3N abs may be dominant. Careful studies are in progress.

- We have performed 1st physics run of the J-PARC E15 experiment to search for deeply-bound K-pp state.
 - ✓ ~4 x 10⁹ kaons were irradiated on ³He.

✓³He (K⁻, n): ~1.4 x 10⁵ events

We presented preliminary results.
✓ Hyperon production(Λ(1520)) spectrum
✓ Semi inclusive 3He(K-, n) spectrum
✓ Exclusive 3He(K-, Λpn) spectrum

J-PARC E15 collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{i[§]}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🙌
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 📕
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy 🛽
- (i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 🔸
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 🔹
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan 🔹
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson

Thank you for your attention !

1: Semi-Inclusive ³He(K⁻,n)

Expected spectrum from MC (Geant4)

- Known K⁻N interactions are considered from babble chamber data [CERN-HERA-83-02]
- Simple assumptions: $\sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n}$ for one-nucleon induced reactions, almost background free
 - − 2N abs.: K^{- 3}He \rightarrow Λ n p_s
 - $\Box \sigma/d\Omega=1$ mb/sr,
 - K⁻pp prod.: K⁻ ³He → K⁻pp n
 - dσ/dΩ=1mb/sr
 - K⁻pp → Λp(25%), Σ⁰p(25%), πΣp(50%)
- \Rightarrow if cross section is over ~1 mb/sr, We have sensitivity of signal.

³He(K⁻,n) M.M. spectrum w/ 1-charged tag in the

Dalitz plot

Dalitz plot of ∧pn

clMnpipi_k0s_target_de_2_mmcut

Invariant Mass of nK⁰s [GeV/c²]

- Λ(1520) peak is clear seen.
- Peak position is consistent with PDG.
 - Combination of CDS & NC performance is good.
- Cross section
 - consistent with old data at the same order level.

Beam spectrometer

TOF(BHD-T0) @+1.0 GeV/c

NC construction was completed in Apr. 2012

Cylindrical Detector System (CDS)

Design performance was achieved!!

Forward neutral particle

- - Neutron momentum is determined by TOF method.
 - Good S/N of ~100@ QF neutron peak (Set threshold to 5 MeVee).
 - $\sigma_{\text{TOF}} \sim 160 \text{ps} \Rightarrow \sigma_{\text{M.M.}} \sim 10 \text{ MeV/c}^2$ at the region of interest.

2: Inclusive ³He(K⁻,Λp)

Expected (simplified) spectrum from MC (Geant4)

