Search for deeply-bound $K^{\bar{\text{bar}}}$ nuclear states via the $^3\text{He}(\text{inflight-K}^-,\text{n})$ reaction at J-PARC

Shun ENOMOTO
(RCNP, Osaka Univ., Japan)
For the J-PARC E15 collaboration

Hadron2013@Nara
Nov. 8, 2013
Contents

• Introduction
 • Kaonic nuclei

• J-PARC E15 experiment
 • Setup
 • Detector performance

• Preliminary results
 • Hyperon resonance
 • Semi-inclusive 3He(K-, n)X spectrum
 • Exclusive 3He(K-, Λpn) spectrum

• Summary
Introduction

Motivation:
what will happen when anti-kaon is embedded in nucleus.

✔ Does the simplest Kaonic nuclei “K-pp” exist?
✔ How much deeply bound?

M.Agnello et al., PRL 94, 212303 (2005)

DISTO

pp\rightarrow K^+\Lambda p

B = 105\pm 2\pm 5 \text{ MeV}
\Gamma = 118\pm 8\pm 10 \text{ MeV}

FINUDA

B = 115\pm 6\pm 4 \text{ MeV}
\Gamma = 67\pm 14\pm 3 \text{ MeV}
J-PARC E15 Experiment

- Search for K⁻pp bound state by using In-flight 3He(K⁻,n) Reaction.
- Measuring both I. M. and M. M. of “K⁻pp”.

Theoretical calculation on 3He(K⁻,n)
T. Koike and T. Harada,
PLB652(2007)262

If right, we can measure the bound structure!
the completed K1.8BR spectrometer [Jun. 2012]

- beam dump
- beam sweeping magnet
- Neutron Charge Veto Proton Counter
- liquid 3He-target system
- CDS beam line spectrometer
- beam line
- 3He-target system
- CDC
- CDH
- ~15m
- K
- n
- p
- NC
- CVC
- PC
Cylindrical Detector System (CDS)

Cylindrical Detector System (CDS)

CDC: Drift Chamber
CDH: Hodoscope
Magnet: 0.7T
Cover 60% of the solid angle.

π+π- invariant mass spectra

- Peak: 497.83 MeV/c²
- DCA < 2 cm displaced Vertex > 3 mm

ρπ- invariant mass spectra

- Peak: 1115.58 MeV/c²
- DCA < 2 cm displaced Vertex > 3 mm

Design performance was achieved!!
Forward neutral particle

- Neutron Counter
 - Neutron momentum is determined by TOF method.
 - Good S/N of \(~100\) @QF neutron peak (Set threshold to 5 MeVee).
 - \(\sigma_{\text{TOF}} \approx 160\)ps \(\Rightarrow \sigma_{\text{M.M.}} \approx 10\) MeV/c\(^2\) at the region of interest.

\[\text{counts} \quad \gamma \quad n\]

\[\frac{1}{\beta} \quad \text{accidental background}\]
J-PARC E15 1st stage physics run

• Accumulated data
 ✓ w/ liquid helium-3 target: ~1% of original proposal

<table>
<thead>
<tr>
<th>period</th>
<th>Primary beam intensity</th>
<th>duration</th>
<th>Kaon on target</th>
</tr>
</thead>
<tbody>
<tr>
<td>May, 2013</td>
<td>24kw (30Tppp, 6s cycle)</td>
<td>88 hours</td>
<td>4.0×10^9</td>
</tr>
</tbody>
</table>

• Preliminary result
 1. Hyperon production study
 • $\Lambda(1520)$ spectrum
 2. Semi-inclusive analysis
 • 3He(K-,n) missing mass spectrum
 3. Exclusive analysis
 • 3He(K-, $\Lambda p n$) exclusive
Preliminary result: Hyperon production

Λ(1520) production

- Semi–inclusive 3He (K-, n) missing mass
- Exclusive 3He (K-, Λpn)

K$^-$ 1.0GeV/c

3He \rightarrow spectator NN π

L(1520) \rightarrow nK0s \rightarrow nπ^+π$^-$
 - Invariant mass nK0s

☑ Hyperon production on nuclear target provides the important information on the Y*N interaction.
☑ There are no data using nuclear target and this energy region (K$^-$: 1GeV/c).
Preliminary result : Hyperon production

\(\Lambda(1520) \) production

- **\(\Lambda(1520) \) peak is clear seen.**
 - BG: \(Kp \rightarrow n\pi K^0s(\text{non-resonant reaction}) \)
 - Peak position is consistent with PDG.

- **Cross section.**
 - Consistent with old data at the same order level.
 - Study of other decay channels is in progress.
Preliminary result:

Semi – inclusive 3He(K-, n) missing mass

Exclusive 3He (K-, Λpn)

K^-

3He

1.0 GeV/c

γ, n

NC hit

CDH hit

charge sweep out

BVC veto

CVC veto

“Semi-”: require at least 1 charged track in the CDS.
Semi-Inclusive $^3\text{He}(K^-,n)$

- w/ charged-track tag in the CDS
- $\sim 1.4 \times 10^5$ events

☑ Quasi free peak ($K^-n \rightarrow K^-n$ & $K^-p \rightarrow K^0n$) is clearly seen.

☑ The excess in the K-bound region is very interesting, it’s hard to explain by detector resolution.

$\sigma_{\text{M.M.}} : \sim 10\text{MeV/c}^2$

@ 1.0 GeV/c

$^3\text{He}(K^-,n)$ missing mass (GeV/c2)
Preliminary result:

Semi–inclusive 3He (K^-, n) missing mass

Exclusive 3He (K^-, $\Lambda p n$)
Missing Mass of 3He(K^-, Λp)

- Missing neutron can be identified.
- Num. of Λpn (n missing) is \sim400 events.

To study the origin of Λpn events, let check Dalitz-plot in the next slide.
$^3\text{He}(K^-, \Lambda pn)$ Result: Dalitz plot of Λpn

Selected neutron missing mass peak.

+ all events
- w/ forward n in the NC

*including $\Sigma^0 pn \rightarrow \gamma \Lambda pn$ events
3He$(K^-, \Lambda pn)$ Result: Dalitz plot of Λpn

Selected neutron missing mass peak.

Kinematical boundary region

*including $\Sigma^0 pn \rightarrow \gamma \Lambda pn$ events
\[^3\text{He}(K^-, \Lambda pn) \text{ Result : Dalitz plot of } \Lambda pn \]

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.

☑️ It seems 3N-abs(\(\Lambda pn\)) exists

\[p\Lambda \text{ in CDS} \]

\[\text{Selected neutron missing mass peak.} \]

\[+ \text{ all events} \]

\[\circ \text{ w/ forward n in the NC} \]

*including \(\Sigma^0 pn \rightarrow \gamma\Lambda pn \) events

\[n \text{ in NC} \]

\[p\Lambda \text{ in CDS} \]

\[(T_p - T_n) / \sqrt{3Q} \]

\[T_\Lambda / Q \]
3He(K$^-$, Λpn) Result: Dalitz plot of Λpn

Selected neutron missing mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.

☑ It seems $3N$-abs(Λpn) exists

- “Λpn” w/ forward n in the NC are a few events.

☑ We would like to carry out high statistical experiments!
2N-abs

\[\Sigma - \Lambda \text{ conversion (2step)} \]

Kpp
3He(K$^-$, Λpn) Result: Dalitz plot of Λpn

Selected neutron missing mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.

☑ It seems 3N-abs(Λpn) exists
☑ 2N-abs is very weak.

- “Λpn” w/ forward n in the NC are a few events.

☑ We would like to carry out high statistical experiments!
3He(K^-, Λpn) Result : Dalitz plot of Λpn

Selected neutron missing mass peak.

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- It seems 3N-abs(Λpn) exists
- 2N-abs is almost nothing.
- can not see Σ-Λ conversion line?

- “Λpn” w/ forward n in the NC is a few events.

☑ We would like to carry out high statistical experiments!
3He(K$^-$, Λpn) Result : Dalitz plot of Λpn

- Events are scattered widely in phase space.
- Multi-N absorption processes exist.
- It seems 3N-abs(Λpn) exists
- 2N-abs is almost nothing.
- Can not see Σ-Λ conversion line?
- “Λpn” w/ forward n in the NC is a few events.
- We would like to carry out high statistical experiments!

Finally, will be confirmed in I. M. of Λp w/ missing n.
\(^3\text{He}(K^-, \Lambda pn) \) Result

\(\Lambda p \) invariant mass

It seems that

☑ 2N abs is very weak.
☑ 3N abs may be dominant.
☑ careful studies are in progress.

\(\text{MC} \)

Kpp
B.E. \(=50 \) MeV
\(\Gamma = 50 \) MeV

2N abs
3N abs

\(\text{2N abs} \)
\(\text{3N abs} \)
Summary

• We have performed 1st physics run of the J-PARC E15 experiment to search for deeply-bound K-pp state.
 ✓~4 x 109 kaons were irradiated on \(^3\text{He}.
 ✓\(^3\text{He} (K^-, n): \sim 1.4 \times 10^5\) events

• We presented preliminary results.
 ✓Hyperon production(\(\Lambda(1520)\)) spectrum
 ✓Semi inclusive \(^3\text{He}(K^-, n)\) spectrum
 ✓Exclusive \(^3\text{He}(K^-, \Lambda\text{pn})\) spectrum
Thank you for your attention!
1: Semi-Inclusive $^3\text{He}(K^-,n)$

- Known $K\cdot N$ interactions are considered from babble chamber data [CERN-HERA-83-02]

Simple assumptions: $\sigma_{\text{tot}} = 2*\sigma_{K-p} + \sigma_{K-n}$ for one-nucleon induced reactions, almost background free
 - $2N$ abs.: $K^- \cdot ^3\text{He} \rightarrow \Lambda n p_s$
 - $\sigma/d\Omega=1\text{mb/sr}$,
 - $K^-\cdot pp$ prod.: $K^- \cdot ^3\text{He} \rightarrow K^-\cdot pp n$
 - $d\sigma/d\Omega=1\text{mb/sr}$
 - $K^-\cdot pp \rightarrow \Lambda p(25\%), \Sigma^0 p(25\%), \pi\Sigma p(50\%)$

\Rightarrow if cross section is over ~1 mb/sr, We have sensitivity of signal.

Expected spectrum from MC (Geant4)

$^3\text{He}(K^-,n)$ M.M. spectrum w/ 1-charged tag in the

\[\text{Bound} \rightarrow K^-p \rightarrow K^0 n \]

$K^-n \rightarrow K^-n$

<table>
<thead>
<tr>
<th>B.E</th>
<th>50MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>50MeV</td>
</tr>
</tbody>
</table>

2N abs

K-pp

ΔK

$\Delta K\pi$

$\Delta K(1405)\pi$

$\Delta K(1520)\pi$

$\Delta K(1690)\pi$

$\Delta K(1385)\pi$

$\Sigma\pi$

$\Sigma\pi\pi$

$\Sigma\pi\pi\pi$

$\Delta\pi$

$\Delta\pi\pi$

$\Delta\pi\pi\pi$

$\Lambda\pi$

$\Lambda\pi\pi$

$\Lambda\pi\pi\pi$

$\Lambda(1405)\pi$

$\Lambda(1520)\pi$

$\Lambda(1690)\pi$

$\Sigma(1385)\pi$

$\Sigma(1385)\pi$
Dalitz plot

Dalitz plot of Λpn

+ all events

● w/ forward n in the NC

*including Σ° → γΛ events

2N abs & Σ-Λ conversion

K⁻ n He

p Λ

+ forward n in the NC

p Λ in CDS (pπ⁻)

signal

K⁻ n He

p Λ

p Λ in CDS (pπ⁻)

K⁻ n He

p Λ

p Λ in CDS (pπ⁻)

signal

K⁻ n He

p Λ

p Λ in CDS (pπ⁻)

K⁻ n He

p Λ

p Λ in CDS (pπ⁻)

K⁻ n He

p Λ

p Λ in CDS (pπ⁻)
Preliminary result: Hyperon production

- $\Lambda(1520)$ peak is clearly seen.
- Peak position is consistent with PDG.
 - Combination of CDS & NC performance is good.
- Cross section
 - Consistent with old data at the same order level.

$\Lambda(1520)$

Graph

Counts/5MeV/c2

- Peak: 1516 GeV/c2
- σ: 11 GeV/c2

Invariant Mass of nK0s [GeV/c2]

Graph

Kp CM frame

Total cross section \sim mb

Angular distribution of L1520[cosΘ]
Beam spectrometer

beam spectrometer @ K1.8BR beam line

properties @ $p_K = 1.0$ GeV/c

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam momentum</td>
<td>1 GeV/c</td>
</tr>
<tr>
<td>momentum bite</td>
<td>$\sim 3%$</td>
</tr>
<tr>
<td>mom resolution @ 1 GeV/c</td>
<td>2.2 MeV/c</td>
</tr>
<tr>
<td>kaon / spill @ 24 kW</td>
<td>150 k</td>
</tr>
<tr>
<td>total beam / spill @ 24 kW</td>
<td>480 k</td>
</tr>
<tr>
<td>k/π ratio</td>
<td>0.45</td>
</tr>
<tr>
<td>T1-FF length</td>
<td>31.3 m</td>
</tr>
</tbody>
</table>

Momentum analyzer
Dipole and wire drift chambers

kaon identification
✓ Aerogel Cherenkov counter
✓ ToF(BHD-T0) Flight length=7.7m
NC construction was completed in Apr. 2012
Cylindrical Detector System (CDS)

Target image

Design performance was achieved!!
Forward neutral particle

- Neutron Counter
 - Neutron momentum is determined by TOF method.
 - Good S/N of ~100@ QF neutron peak (Set threshold to 5 MeVee).
 - $\sigma_{\text{TOF}} \sim 160\text{ps} \Rightarrow \sigma_{\text{M.M.}} \sim 10 \text{ MeV/c}^2$ at the region of interest.
events: 293
S/N: 0.29
peak: 1.516 GeV/c^2
σ: 0.009 GeV/c^2
2: Inclusive \(^3\)He(K\(^-\),Λp)

Expected (simplified) spectrum from MC (Geant4)

- Known K\(^-\)-N interactions are considered from babble chamber data [CERN-HERA-83-02]
- Simple assumptions:
 - \(\sigma_{\text{tot}} = 2*\sigma_{K-p} + \sigma_{K-n}\)
 - 2N abs.: K\(^-\) \(^3\)He → Λ p n\(_s\)
 - \(\sigma/d\Omega=1\text{mb/sr}, \text{(isotropic)}\)
 - 3N abs.: K\(^-\) \(^3\)He → Λ p n
 - \(d\sigma/d\Omega=1\text{mb/sr} \text{ (isotropic)}\)
 - K\(^-\)pp prod.: K\(^-\) \(^3\)He → K\(^-\)pp n
 - \(d\sigma/d\Omega=1\text{mb/sr} \text{ (isotropic)}\)
 - K\(^-\)pp → Λp(25%), \(\Sigma^0\)p(25%), \(\pi^\Sigma\)p(50%)