A Search for deeply-bound Kaonic nuclear state at the J-PARC E15 experiment

> SADA, Yuta Kyoto University,RIKEN On behalf of the J-PARC E15 collaboration

J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^d, P. Buehler^e, L. Busso^{f,g},
M. Cargnelli^e, S. Choi^c, C. Curceanu^h, S. Enomotoⁱ, D. Faso^{f,g}, H. Fujioka^j, Y. Fujiwara^k,
T. Fukuda^l, C. Guaraldo^h, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^j, M. Iioⁿ, M. Iliescu^h,
K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimotoⁿ, T. Ishiwatari^e, K. Itahashi^m, M. Iwaiⁿ,
M. Iwasaki^{o,m*}, S. Kawasakiⁱ, P. Kienle^p, H. Kou^o, Y. Ma^m, J. Marton^e, Y. Matsuda^q,
Y. Mizoi^l, O. Morra^f, T. Nagae^{j†}, H. Noumi^a, H. Ohnishi^m, S. Okada^m, H. Outa^m,
K. Piscicchia^h, M. Poli Lener^h, A. Romero Vidal^h, Y. Sada^j, A. Sakaguchiⁱ, F. Sakuma^m,
M. Sato^k, A. Scordo^h, M. Sekimotoⁿ, H. Shi^k, D. Sirghi^{h,d}, F. Sirghi^{h,d}, K. Suzuki^e,
S. Suzukiⁿ, T. Suzuki^k, H. Tatsuno^h, M. Tokuda^o, D. Tomono^m, A. Toyodaⁿ, K. Tsukada^r,
O. Vazquez Doce^{h,s}, E. Widmann^e, T. Yamazaki^{k,m}, H. Yim^t, and J. Zmeskal^e

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea (d) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (e) Stefan-Meyer-Institut f
ür subatomare Physik, A-1090 Vienna, Austria (f) INFN Sezione di Torino, Torino, Italy (g) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy (h) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy Department of Physics, Osaka University, Osaka, 560-0043, Japan (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan (1) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan (m) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan (n) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan (o) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan (p) Technische Universität München, D-85748, Garching, Germany (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

Contents

- Introduction
 - KN interaction and Kaonic nuclei
- J-PARC E15 experimental Set up
 - Set up
 - Expected spectra of ³He(K-,n)
- Preliminary analysis status of full-setup engineering run(June. 2012)
 - Beamline
 - CDS
 - o PID
 - \circ Invariant mass spectra (Λ)
 - Neutral particle spectra
- Summary

- Kaonic nuclei
 - Kaon bound states with a few nucleons
 - There are some experimental result of the simplest Kaonic nuclei (KNN)
 (FINUDA ,DISTO)
 - KNN state really exists? What is the value of
 - binding energy and width?

J-PARC E15 experiment

Experimental search for KNN bound states using in-flight (K⁻, N) reaction on ³He

Formation spectra : in-flight ³He(K⁻,n) <u>K⁻ + ³He \rightarrow "K⁻pp" + n @ P_K=1GeV/c, θ =0°</u>

T.Koike and T.Harada. , PLB652 (2007) 262

Preliminary Analysis status of E15 engineering Run (full set up)

June 2012 1st Engineering run with full set up (w/ liq. ³He target) Run time ~2day

Beam Spectrometer

- Target image reconstructed with Beam track and CDS track
- Target cell is clearly seen !

- Correlation of K- 's cos and momentum is clear => elastic scattering
- there is some deuteron events=> ${}^{3}He(K-,d)\Lambda$ reaction??

- We successfully reconstructed Λ
- σ of mass is consistent to Simulation=> Achieved designed value(CDS resl. 200μm)

•invariant mass resolution(Kpp) =10MeV/c² (with simulation)²

Forward neutral particle spectra

Summary

- J-PARC E15 experiment
 - search for a KNN bound state using in-flight ³He(K⁻, N) reaction
 - All system works well!
 - Beam line achieved 0.2% momentum resl.
 - Mass resolution of Λ is consistent with designed value of CDS
 - => Kpp invariant mass resl.=10MeV/c²(with sim)
 - We successfully get Neutral particle spectra
 >Missing mass resolution (Kpp) =10MeV/c²
- Next winter , production run will be started
 We will accumulate more than 50~100 times data!

Rough estimation of yield(Kpp)

Proposal

K intensity/pulse	time	dσ/dΩ	Крр
1.4x10 ⁶	40day	10µb/sr	1000
		1mb/sr	100,000

• Engineering run (June 2012)

K intensity/pulse	time	ds/dW	Крр
6.0x10 ⁴	1day	10mb/sr	<1
		1mb/sr	~60

• Next winter run (Feb ,Mar 2013)

K intensity/pulse	Time	ds/dW	Крр
2.1x10 ⁵	14day	10mb/sr	~50
		1mb/sr	~5,000

Kinetic distribution of Λ

 Momentum dis. Λ is almost same as simulation' s one
 peak (data) ~0.45GeV/c
 peak (sim) ~0.4GeV/c

π⁺ π⁻ invariant mass (K0s peak)

	Data	Sim
mean	488.1 ±0.2 [MeV]	495.7[MeV]
σ	8.8±0.2[MeV]	10.2[MeV]
Num K0s	~6.8k	
٠		

Simulation

- Run43 data(2012 May -June)
- Data sum ~1kw*week
- K- beam (1.0GeV/c)
- ³He target
- Target cell selected
- Simulated with CDC resl.=250µm

Kinetic distribution of K0s

 Momentum dis. K0s is almost same as simulation's one
 (there are 2 peak)

Ap opening angle (w/o target selection [He/Fe])

•21

Dalitz plot (Final state Λpn)

Beamline spectrometers • BHD & To(Beam trigger)

- Plastic scintillator arrays
- PID for beam
- Time resolution TOF(BHD-To)~160ps
- AC(Kaon ID at trigger level)
 - Aerogel Cherenkov counter (index=1.05)
 - P ID eff. =97%(Vth=5.p.e.)
- D5 magnet & BLC (Beam spectrometer)
 - Dipole Mag. & wire chamber
 - Momentum resolution =0.1%

Cylindrical Detector System

 A newly developed system for invariant mass study

Hodoscope And Solenoid Size: 99 x 30 x 700 mm³ (W x T x L) Configuration : 36 modules PMT : fine-mesh type (H8409 Solenoid Mag. Max 0.71

Expected mass resolution : $-\sigma \sim 3.6 \text{ MeV/c}^2 \text{ for } \Lambda$ $-\sigma \sim 10 \text{ MeV/c}^2 \text{ for K}^pp$ ($\sigma_{cdc} = 200 \ \mu\text{m}$ / Field : 0.7 T)

Forward TOF counters

to suppress accidental background of NC

Neutron counter(NC)

- 20 x 5 x 150 cm³
 Plastic Scintillator
- Configuration : 16 (wide) x 7 (depth)
- Surface area : 3.2m x 1.5m
- missing mass resolution for K-pp $\sigma = 9.2 \text{ MeV/c}^2$ (P_n=1.3 GeV/c, σ_{TOF} =150 ps)

Proton counter

- 10 x 3 x 150 cm³ Plastic Scintillator
- Configuration : 27+34 layer

• missing mass resolution for KNN

 $\sigma = 6.8 \text{ MeV/c}^2 (P_p = 1.3 \text{ GeV/c}, \sigma_{TOF} = 100 \text{ ps})$

³He(K⁻, n/p) reaction

- At ³He(K⁻, n) reaction, there are 2 reaction components (A, B)
 ->Can not separate A and B experimentally.
- At ³He(K⁻, p) reaction, there is only reaction C. And reaction B and C are isobaric analogical.
- ->To compare with both ³He(K⁻, n/p) reactions, We can get the information of isospin dependence of reactions

Theoretical Calculation of (K⁻, n/p) reaction

Calculation of (K- ,n/p)KNN missing-mass spectrum

$$\begin{split} |K^{-}\rangle|p\rangle|p\rangle &= -\sqrt{\frac{1}{3}}|3/2, +1/2\rangle_{1} + \sqrt{\frac{1}{6}}|1/2, +1/2\rangle_{1} - \sqrt{\frac{1}{2}}|1/2, +1/2\rangle_{0} \\ |\bar{K}^{0}(pn)_{T=0}\rangle &= \sqrt{\frac{3}{4}}|1/2, +1/2\rangle_{1} - \sqrt{\frac{1}{4}}|1/2, +1/2\rangle_{0} \\ |\bar{K}^{0}(pn)_{T=1}\rangle &= \sqrt{\frac{1}{3}}|3/2, +1/2\rangle_{1} + \sqrt{\frac{1}{12}}|1/2, +1/2\rangle_{1} + \sqrt{\frac{1}{4}}|1/2, +1/2\rangle_{0} \\ |K^{-}(pn)_{T=0}\rangle &= -\sqrt{\frac{3}{4}}|1/2, +1/2\rangle_{1} + \sqrt{\frac{1}{4}}|1/2, +1/2\rangle_{0} \\ |K^{-}(pn)_{T=1}\rangle &= -\sqrt{\frac{1}{3}}|3/2, +1/2\rangle_{1} + \sqrt{\frac{1}{12}}|1/2, +1/2\rangle_{1} + \sqrt{\frac{1}{4}}|1/2, +1/2\rangle_{0} \end{split}$$

 $|\alpha,\beta\rangle_T$

α: isospin of KNN
β: z component of isospin KNN
T: isospin of KN subsystem

Background?? : two nucleon absorption 2NA + ΛN rescattering / ΣΛ conversion looks like a "signal" ?? (2NA itself is not a problem.)

De Broglie wave length @ I GeV/c ~ I.2 fm NN distance in ${}^{3}\text{He}$ ~ 2.25 fm

> Proc. Jpn. Academy, Series B83 (2007) 144.

These probabilities are expected to be very small ... Anyway, let's see how they look like!

T. Kishimoto et al., Prog.Theor.Phys. 118(2007)181.

Motivation of measuring ³He(K⁻, n/p) reaction ³He(K⁻, n) reaction

 Only ³He(K⁻, n) reaction channel was proposed @ E15 exp.

→because K⁻ is more attractive proton than neutron, so K⁻pp is most bounded simply.

- But isospin components of KNN from ³He(K⁻, n) reaction is mixed strongly attractive one and another one.
- only measuring ³He(K⁻, n) reaction, we can not separate strongly attractive one and another one.

→Both measuring ³He(K⁻, n/p) is needed!

Background study 2(Dalitz's plot)

Signal can be distinguished between background !!

Identification of Λpn final state

by CDS & NC

