FUTURE EXPERIMENTS ON KAONIC NUCLEI AT K1.8BR

T. Nanamura (JAEA) for the J-PARC E80 and P89 collaboration

Contents

KbarN interaction and K1.8 BR beamline

- Milestone experiment: J-PARC E15(-2nd)

Upgrade plan of beamline and solenoidal spectrometer system

Proposed physics programs

- E80: Systematic investigation of the light kaonic nuclei
 via the in-flight ⁴He(K⁻, N) reactions
- P89: spin-parity measurement of "K-pp" and "K⁰nn" search

KbarN interaction

- Important subjects to understand meson-baryon interactions in low-energy QCD
- Attractive KbarN (I=0) interaction
 - Specific property of KbarN interaction
 ⇔πN interaction is repulsive in S-wave
 - $\Lambda(1405)$ can be interpreted as a quasi-bound state of KbarN
 - The existence of kaonic nuclei is also discussed
 - The lightest Kaonic nuclei: "K⁻pp"
 - Many experiments tried to establish the existence
 - However, various results have been reported.
 - Positive: FINUDA@DAFNE, DISTO@SATURNE, E27@J-PARC
 - Negative: AMADEUS@DAFNE, HADES@GSI, LEPS@SPring-8

Present K1.8 BR beamline @J-PARC

- 31.3 m beamline with 1-stage electrostatic separator
 - Maximum momentum:1.2 GeV/c, π^{\pm} , K^{\pm} , p, pbar beams are available
 - Typical K⁻ beam (accelerator power 51kW):1.0 GeV/c, 210 k /(spill=5.2 s), K⁻/pi⁻=0.5,
- Many physics programs on KbarN interaction have been performed!
 - Kaonic atom : X-ray spectroscopy of K⁻d (E57), K⁻³He(E62)
 - Λ(1405) : Spectroscopy of Λ(1405) (E31)
 - Kaonic nuclei : search for **"K-pp" (E15)** and "KbarNNN" (T77-byproduct)

Milestone experiment : J-PARC E15(-2nd)

- "K-pp" search experiment
 - Using the in-flight $K^{-}+^{3}He$ reaction
 - reaction process is clear
 - Exclusive analysis of the Apn final state
 - Not only the Λp invariant-mass (m_x)
 but also momentum transfer
 to the Λp system (q_x) were reconstructed
 - "Bound state" is
 efficiently distinguished from
 Quasi-free K⁻ absorption

Further study on kaonic nuclei

- We want to apply successful E15 method to other kaonic nuclei
 - Mesonic decay channel (πΛΝ, πΣΝ)
 - Branching ratio between mesonic/non-mesonic channel provide information on density
 - Heavier systems (KbarNNN, KbarNNNN,...)
 - Mass dependence of binding energy? Density (size)?
 - "K⁰nn" search
 - "K⁰nn" → An decay etc...
 - Production cross section
 - Provide information on J^{π} of KNN (spin-isospin selection rule)
 - ->More decay particles including neutron
 - Determining detailed properties of "K⁻pp" such as J^{π}
- Required experimental upgrades
 - Exclusive analysis needs detection of all particles from kaonic nuclei
 - Solid angle, neutron detection efficiency
 - More statistics
 - Increase K⁻ beam intensity
 - ->we are planning to upgrade beamline and spectrometer system

FIG. 13. Fractions of mesonic, sum of $(\pi \Sigma)^0$, and nonmesonic absorption to total absorption.

Upgrade plan of K1.8 BR beamline

- Beamline length: 31.3 → 28.8 m by removing a magnet
- Expected K⁻ beam (accelerator power 90kW)
 - 1.0 GeV/c, 420 k/(spill=4.2 s), K⁻/pi⁻=~0.7 (1.2M particle /spill)
 - On target: 270k/spill
 - Spill cycle will be shortened due to upgrade of Accelerator

Present Spectrometer system @J-PARC

- solenoidal spectrometer
 - Normal-conducting solenoid magnet (0.7T over tracking volume)
 - CDC (Cylindrical Drift Chamber)
 - CDH (Cylindrical Detector Hodoscope)
 - 3cm-thickness, neutron detection efficiency \sim 3%

Momentum resolution 5.3 % for p_T Vertex resolution: $\sigma_r \sim 2-3 \text{ mm}, \sigma_z \sim 1 \text{cm}$ β resolution 0.5 %

Upgrade plan of Spectrometer system @J-PARC

- solenoidal spectrometer with larger acceptance
 - Superconducting solenoid magnet (0.7T over tracking volume)
 - CDC (Cylindrical Drift Chamber)
 - CNC (Cylindrical Neutron Counter)
 - 5×3 cm thickness plastic scintillator array
 - VFT (Vertex Fiber Tracker)→new detector

Momentum resolution 2-3 % for p_T Vertex resolution: $\sigma_r \sim 2-3 \text{ mm}, \sigma_z \sim 1 \text{mm}$ β resolution 0.5 % Performances will retain or will be improved!

93% of 4π , detectors will be \sim 3 times longer 4050

Schedule

- Beam line upgrade and Installation new spectrometer will start 2025 summer
 - After E73 (${}^{3}_{\Lambda}$ H lifetime measurement) and E72 (Λ * resonance search)
- Commissioning run for new spectrometer will be performed in FY2026.
 - LH₂ target, for about 1 week beamtime
- physics run with new spectrometer will be started FY2026
 - 1st step: J-PARC E80 experiment
 - Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

	FY2022				FY2023					FY2024			FY2025				FY2026-			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
SC Sorenoid	[Design	Pu (Yoke	rchase , SC wire)	Construction								Installation & test			~		ning	_	
CNC	Design & prototype test purchase & assembly											semble	tes commis	st & ssioning		atior		ssior	s rur	
CDC	Design							Const	ruction		tes	st & con	nmissior	ling			egra		nmis	lysic
VFT	prototype test & performa								ance evaluation			production		tes commis	st & ssioning	Int			Con	P
K1.8BR beam line	E73 (lifetime measurement of hypertriton) experiment									E72 (72 (Λ* resonance search with HypTPC)				ea gement		with new CI			

Proposed physics programs with upgraded experimental setup : E80 and P89

Proposed physics program-E80

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- The K⁻ppn state will be easily observed Via 2-body Ad decay
- ->1st experiment of new CDS
 - Limited statistics data with Existing CDS
 - J-PARC T77 biproduct, 6G K⁻
 - Similar 2D plot to "K⁻pp" case in E15
- We also have a chance to reconstruct
 K⁻ppn state via 3-body Λpn decay

Proposed physics program-E80

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- Detector acceptance for the Ad detection
 - A few times larger than existing CDS!

Proposed physics program-E80

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- Yield estimation

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$

 $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

 $- N_{beam} = 100 \text{ G } \text{K}^{-} \text{ on target}$ Λd Λpn • Corresponding to \sim 3 weeks data taking $\sigma(K-ppn)*Br$ 5 µb 5 µb N(K⁻ on target) 100 G 100 G - $\sigma(K^-ppn) \cdot Br(\Lambda d) \sim 5 \mu b$ 2.56×10^{23} 2.56 x 10²³ N(target) Assumption From the T77 result 0.92 0.92 ε(DAQ) - $N(K ppn \rightarrow \Lambda d) \sim 12 \text{ k events}$ 0.98 0.98 ε(trigger) - $N(K ppn \rightarrow \Lambda pn) \sim 1.5 k events$ ε(beam) 0.72 0.72 1.7 k "K⁻pp" $\rightarrow \Lambda$ p events in E15 (40 G K⁻) 0.23 0.06 $\Omega(CDC)$ 0.6 0.3 ε(CDC)

12 k

N(K⁻ppn)

1.5 k

Proposed physics program-P89

Investigation of the spin and parity of the KbarNN state

- Measuring the spin-spin correlation between Λ and p from "K⁻pp"→Λp decay
 - $\alpha_{\Lambda p} = 1 \ (J^{\pi} = 0^{-}), \ \alpha_{\Lambda p} = 1/3(J^{\pi} = 1^{-})$
- Spin direction of Λ can be
 Estimated from pπ decay
- To measure the spin direction
 of the proton using p-C scattering,
 tracker stack should be additionally equipped
 - Scintillating fiber?
 - Straw tube?

Proposed physics program-P89

Investigation of the spin and parity of the KbarNN state

- Expected result for 8-week data taking
 - $\alpha_{\Lambda p}$ measurement
 - 420 k "K-pp" $\rightarrow \Lambda p$ events
 - 250 times larger than E15
 - When J^P=0⁻ case, J^P= 1⁻
 hypothesis Would be excluded
 more than 95% C. L.
 - "K⁰bar nn" measurement
 - ${}^{3}He(K^{-},p)$ reaction, Reconstruct from "K⁰barnn" $\rightarrow \Lambda n$
 - Production cross section is expected to strongly depend on J^{π} due to spin-isospin selection rule.
 - $\sigma^*BR \sim 7\mu b/sr (1^- case), \sigma^*BR \sim 1.4\mu b/sr (0^- case)$
 - These measurement would provide conclusive results of J[¬]!

Summary

- J-PARC E15 experiment @ K1.8 BR beamline successfully founded the existence of "K⁻pp" states using the in-flight K⁻ +³He reaction with an exclusive analysis of the Λpn final state.
- Further investigations for kaonic nuclei are needed
 - Heavier systems (KbarNNN, KbarNNN,...)
 - Spin and parity of the "K⁻pp"?
 - Mesonic decay channel ($\pi\Lambda N$, $\pi\Sigma N$)
- We are developing a new magnetic spectrometer
 - Large solid angle (93 % of 4π)
 - thicker plastic scintillator (×5 neutron detection efficiency)
 - Momentum/position resolutions will retain or will be improved
- Construction of new spectrometer in K1.8BR will be started in FY2025 and Physics run with new spectrometer will be started FY2026!
- If you are interested in or/and have ideas for the experiments with the spectrometer, we are welcome!

