Studies of the KNN bound state via the exclusive analysis of the in-flight (K⁻, n) reaction at J-PARC

T. Yamaga For the J-PARC E15 collaboration

Contents

- Introduction
- Experimental apparatus
- Results & Discussion

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

In "hadron" Λ(1405)

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

Recent lattice calculation

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

In "hadron" Λ(1405)

Seems to be K – N molecule

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

E15 experiment

- Experiment to search for Kpp bound state
 - In-flight (K-, n) reaction to generate Kpp bound state

$K^{-} + {}^{3}He$ <u>"Kpp" + n</u>

- Cylindrical detector system
 - Surrounding the ³He target
 - Detecting scattering particles

- Cylindrical detector system
 - Surrounding the ³He target
 - Detecting scattering particles
 - Charged
 - Track & TOF information → PID

- Cylindrical detector system
 - Surrounding the ³He target
 - Detecting scattering particles
 - Charged
 - Track & TOF information → PID
 - Neutral
 - Momentum by TOF
 - Only a few % efficiency...

- Cylindrical detector system
 - Surrounding the ³He target
 - Detecting scattering particles
 - Charged
 - Track & TOF information → PID
 - Neutral
 - Momentum by TOF
 - Only a few % efficiency...

Final state is identified by using "kinematic fitting" & "DCA informations".

Exclusive channels

Exclusive analysis of,,,

- $K^- + {}^{3}He \rightarrow \Lambda p + n channel$
 - Detected : π-pp
 - Missing : n

Exclusive analysis of,,,

K⁻ + ³He

arXive:1805.12275

Ap invariant-mass spectrum

 $q_{\Lambda p}$: momentum transfer by virtual kaon

- **1) Quasi-elastic Kaon**
 - •Gaussian peak
 - •Moving with q
- 2) Kpp bound state
 - •Breit-Wigner peak •Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

- **1) Quasi-elastic Kaon**
 - •Gaussian peak
 - •Moving with q
- 2) Kpp bound state
 - •Breit-Wigner peak •Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

- **1)** Quasi-elastic Kaon
 - •Gaussian peak
 - Moving with q
- 2) Kpp bound state
 - Breit-Wigner peak
 Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

- 1) Quasi-elastic Kaon
 - •Gaussian peak
 - •Moving with q
- 2) Kpp bound state
 - •Breit-Wigner peak •Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

Summary of Apn analysis

Observed spectrum can be reproduced by three components.

Parameters of Kpp are,

B.E. ~ 50 MeV Γ ~ 100 MeV Q ~ 400 MeV

Exclusive analysis of,,,

- K⁻ + ³He $\rightarrow \pi\Sigma p$ + n channel
 - Detected : π + π -np

<u>Neutron from Σ -decay must be detected!</u>

Missing : n

$\pi\Sigma$ invariant-mass spectrum

$\pi\Sigma p$ invariant-mass spectrum

Comparison btw. Ap & $\pi\Sigma p$

Comparison btw. Ap & $\pi\Sigma p$

Comparison btw. Ap & $\pi\Sigma p$

Conclusion

- Exclusive channel of in-flight (K⁻, n) reaction has been studied.
 - Λpn channel
 - Spectrum is reproduced by three components.
 - Kpp production has been observed.
 - B.E. ~ 50 MeV
 - Г~100 MeV

$\pi\Sigma p$ channel

- QF Y* production is dominant.
- Kpp signal is not clearly seen.
 - Due to small phasespace?
 - Need more statistics

Thank you for your attention J-PARC E15 collaboration

S. Ajimura¹, H. Asano², G. Beer³, C. Berucci⁴, H. Bhang⁵, M. Bragadireanu⁶, P. Buehler⁴, L. Busso^{7,8}, M. Cargnelli⁴, S. Choi⁵, C. Curceanu⁹, S. Enomoto¹⁰, H. Fujioka¹¹, Y. Fujiwara¹², T. Fukuda¹³, C. Guaraldo⁹ T. Hashimoto¹⁴, R. S. Hayano¹², T. Hiraiwa¹, M. Iio¹⁰, M. Iliescu⁹, K. Inoue¹, Y. Ishiguro¹⁵, T. Ishikawa¹² S. Ishimoto¹⁰, K. Itahashi², M. Iwasaki^{2,11}, K. Kanno¹², K. Kato¹⁵, Y. Kato², S. Kawasaki¹, P. Kienle¹⁶,[†] H. Kou¹¹, Y. Ma², J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹³, O. Morra⁷, T. Nagae¹⁵, H. Noumi¹, H. Ohnishi^{17,2}, S. Okada², H. Outa², K. Piscicchia⁹, Y. Sada¹, A. Sakaguchi¹, F. Sakuma²,[‡] M. Sato¹⁰. A. Scordo⁹, M. Sekimoto¹⁰, H. Shi⁹, K. Shirotori¹, D. Sirghi^{9,6}, F. Sirghi^{9,6}, K. Suzuki⁴, S. Suzuki¹⁰, T. Suzuki¹², K. Tanida¹⁴, H. Tatsuno¹⁸, M. Tokuda¹¹, D. Tomono¹, A. Toyoda¹⁰, K. Tsukada¹⁷, O. Vazquez Doce^{9,16}, E. Widmann⁴, T. Yamaga^{2,1},[§] T. Yamazaki^{12,2}, Q. Zhang², and J. Zmeskal⁴ ¹ Osaka University, Osaka, 567-0047, Japan ² RIKEN, Wako, 351-0198, Japan ³ University of Victoria, Victoria BC V8W 3P6, Canada ⁴ Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria ⁵ Seoul National University, Seoul, 151-742, South Korea ⁶ National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele, Romania INFN Sezione di Torino, 10125 Torino, Italy ⁸ Universita' di Torino, Torino, Italu ⁹ Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan Tokyo Institute of Technology, Tokyo, 152-8551, Japan ¹² The University of Tokyo, Tokyo, 113-0033, Japan ¹³ Osaka Electro-Communication University, Osaka, 572-8530, Japan ¹⁴ Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ¹⁵ Kyoto University, Kyoto, 606-8502, Japan ¹⁶ Technische Universität München, D-85748, Garching, Germany ¹⁷ Tohoku University, Sendai, 982-0826, Japan and ¹⁸ Lund University, Lund, 221 00, Sweden

- Can Kaon be building block?
 - We know that KbarN interaction is strongly attractive!

In "hadron" Λ(1405)

In "necleus"

Seems to be K – N molecule

CDS analysis

- Momentum analysis
 - Solenoid magnet & CDC
- PID
 - TOF & momentum
- Demonstration
 - A and K^o reconstruction

Cylindrical detector system

CDS analysis

- Momentum analysis
 - Solenoid magnet & CDC
- PID
 - TOF & momentum
- Demonstration
 - A and K^o reconstruction

Momentum vs. mass

How to find the Kpp?

- Catch ∧ and p
 - PID and momentum measurement

- Select the reaction
 - Apn final state with missing-mass method

- Look at Ap spectrum
 - Is there peak?

∧ identification

- Identify the proton from Λ-decay
 - πp invariant-mass
 - DCA informations

Λ identification

- Identify the proton from A-decay
 - πp invariant-mass
 - DCA informations
- $K^{+3}He \rightarrow \Lambda p + n$ event selection
 - Using log-likelihood function
 - DCA informations
 - p-value of the kinematical fit
- Purity?

³He(K⁻, πpp)"X" vs. lnL

Purity of final sample

- Evaluated by using MC simulation
 - Signal

...

- $\Lambda pn \rightarrow \pi ppn$
- Background
 - $\Sigma^{0}pn \rightarrow \gamma \Lambda pn \rightarrow \gamma \pi^{-}ppn$
 - Σ -pp $\rightarrow \pi$ -npp
 - $\Lambda \pi^0 pn \rightarrow \pi^0 \pi^- ppn$

<u>Neutral particles are invisible.</u>

All of them looks the same final state, π -ppn

Purity of final sample

 Evaluated by using MC simulation Fitting the spectra 	name	ratio
	Λpn	72%
 Signal : 72 % Background : 28 % Acceptable S/N ratio 	Σ⁻ρρ	8.4%
	Σ⁰ρη	18%
	ΛΝΝ + π	1.1%
<u>Next</u> Lets see Λp invariant-mass!	ΣΝΝ + π	0.3%

Before showing Ap invariant-mass...

• How does it look? **Peak in bound region?**

Ap invariant-mass spectrum

Situation of Kpp

- Theoretical studies
 - Exist!
 - But, B.E. & I widely distribute
- Experimental studies
 - Larger B.E.?
 - Really Kpp signal?

- Fitting functions
 - **1)** Quasi-elastic Kaon
 - 2) Kpp bound state
 - 3) Broad background

Fitting functions 1) Quasi-elastic Kaon • Gaussian peak • Moving with q

Fitting functions

1) Quasi-elastic Kaon• Gaussian peak
• Moving with q

2) Kpp bound state

•Breit-Wigner peak •Independent on q

- **1) Quasi-elastic Kaon** Gaussian peak
 Moving with q
- 2) Kpp bound state Breit-Wigner peak Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

- **1) Quasi-elastic Kaon**
 - •Gaussian peak
 - •Moving with q
- 2) Kpp bound state
 - •Breit-Wigner peak •Independent on q
- **3) Broad background** Small m dependence
 distribute in higher q region

Λ* door-way?

Results from Μ(πΣ) spectrum • I=0 dominant • ~100 μb Λ(1405) production QF-Y* production

Part of Y* production Kpp production

