Exclusive Analysis of the in-flight 3 He(K⁻, Λ p)n_{missing} reaction to search for the K^{bar}NN bound state

Few body 21 Y.SADA 2015/05/21

Contents

- Introduction
 - Strange and exotic matter
 - K^{bar}NN
 - E15 experiment
- Analysis of ³He(K⁻, Λp)n reaction
- Conclusion

Strange and exotic matter

- Hadron with strangeness
 - Kaon (meson)
 - Λ, Σ, Λ(1405)(baryon)
- What happens if strange matter is in nuclei??
 - Λ in nuclei => hyper nuclei
 - Kaon in nuclei => kaonic nuclei exotic!
- To investigate these exotic matter, we can extract information of interaction of YN,YY and KN
- structure of neuron star, or new high density matter??

K^{bar} in nucleus

- K^{bar}-N interaction
 - Expected to be strongly attractive when I=0
 - Low energy KN scattering experiments
 - Kaonic-atom experiments (KpX@KEK, DEAR/SIDDHARTA @DAΦNE)
 - What happens if K^{bar} is embedded in nucleus?
 - K^{bar}-nucleus bound state?
 - high density?
 - Kaonic nucleus is a bound state of nucleus and antikaon (K^{bar}NN, K^{bar}NNN, ...)

T.Yamazaki, A.Dote, Y.Akiaishi, PLB587, 167 (2004).

Deeply bound K^{bar}NN

Negative

LEPS @Spring-8

Phys. Lett B728(2014) 616

photon -induced reaction

E15 @J-PARC

arXiv:1408.5637v2 (Accepted by PTEP)

3He(K-, n)X @1.0GeV/c (inclusive)

5

HADES@GSI NPA914(2013)60

p + p → (Λ + p) + K⁺ @ 3.5GeV

J-PARC K1.8BR beam line[Jun. 2012]

- No significant excess over 2.25GeV/c²
 - Kaon induced reaction doesn't generate deeply bounded K^{bar}NN state?
- Excess near Kpp threshold
 - loosely K^{bar}NN state? $\Lambda(1405)N$ 2body reaction? New resonance?

Exclusive analysis of the in-flight via. ${}^{3}\text{He}(\text{K}^{-}, \Lambda p)n_{\text{missing}}$ reaction

Monte Calro simulation of known elementary processes

- Kaon multi nucleon absorption and π emission(YNN + π)
- generated each process via PWIA, namely final state simply follows its phase space (with spectator, if any).

 Can we reproduce data spectrum with these processes?

- Prominent peak structure is seen above known processes.
 Especially, peak structure near Kpp threshold.
 - χ^2 /NDF =171 / 49 (~200 events)
- To understand peak structure, following 3 candidates are examined

Examination of possible candidates 1. Known elementary process (previous slide)

2. 2 step reactions

K-

1.0GeV/c

- 2NA followed by $\Sigma\Lambda$ conversion
- 2NA followed by $\Lambda_{(1405)}$ N conversion

ΣΛ conversion

• KN \rightarrow KN followed by KNN \rightarrow Λ N neutron

³He

3. S=-1 di-baryonic state

Peak position ~2.25GeV /c² => too small χ^2 /NDF =150 / 49Notice:
2NA itself isNot consistent2NA itself is

Notice: 2NA itself is not observed in our data => 2NA should be weak

Examination of possible candidates

1. Known elementary process (previous slide)

2. 2 step reactions

- 2NA followed by $\Sigma\Lambda$ conversion

³He

• 2NA followed by $\Lambda_{(1405)}$ N conversion

 $\Lambda_{(1405)}N$

p

conversion

16

- KN \rightarrow KN followed by KNN \rightarrow
- 3. S=-1 di-baryonic state

K⁻ 1.0GeV/c

Peak position ~2.40GeV /c² χ^2 /NDF =123 / 49Not consistent2

Notice: 2NA itself is not observed in our data => 2NA should be weak

Examination of possible candidates

1. Known elementary process (previous slide)

2. 2 step reactions

- 2NA followed by $\Sigma\Lambda$ conversion
- 2NA followed by $\Lambda_{(1405)}$ N conversion
- KN \rightarrow KN followed by KNN \rightarrow Λ N neutron
- 3. S=-1 di-baryonic state

K-

1.0 GeV/c

Re-absorption of the "back-scattered kaon" by spectator NN

³He

K+NN

absorption

Examination of possible candidates

- 1. Known elementary process (previous slide)
- 2. 2 step reactions
 - 2NA + $\Sigma \Lambda$ conversion
 - $\bullet \mathsf{KN} \to \mathsf{KN} + \mathsf{KNN} \to \mathsf{AN}$
 - 2NA + $A_{(1405)}$ N conversion
- 3. S=-1 di-baryonic state

K-

1.0GeV/c

Peak structures from these processes are not consistent of our data spectrum !!

20

neutro

³He New resonance?

S=-1 di-baryonic state

- Assumption of a resonance state X (S=-1, baryon number =2)
- X state has been generated as a function of mass of X M_X and decay width Γ_X.
 - Width of the peak is assumed to be Bright-Wigner shape
 - K⁻+³He=> X n(in phase space)
 - X decay to Ap in uniformly angle distribution

To evaluate Mass and width, Minimum position on χ^2 map was searched.

Mass and width of X state

- From χ² map, it is shallow and having large width, if it is K^{bar}NN.
- In I.M, significance of X state(sig/sqrt(sig+bg)) =8.0

- Region of X state in I.M. (Λp) is consistent to excess in missing mass of ³He(K⁻,n)X
- Deeply bound K^{bar}NN
 - In our experiment (induced Kaon reaction), bump structure of 100MeV bound K^{bar}NN is not seem
- 100MeV bound K^{bar}NN formation is strongly depends on reaction?
 - K / π induced?
 - Momentum transfer??

X state is shallow bound K^{bar}NN? or other state?

Conclusion

- First Physics run of the E15 experiment has been performed
 - Data statics is enough to analyze ³He(K⁻, Λ p)n reaction
- Data spectra of ³He(K⁻, Λp)n can not be reproduced by known elementary process
- Λp invariant mass spectra could be explained shallow and wide S=-1 di-baryonic resonance.
 - Mass of the resonance state is very near K+p+p threshold
 - Full width is about 100 MeV
- Is it surely resonance state? K^{bar}NN ?

=>We need more information (i.e. spin / isospin)

- We will obtain 10 times statics of this data in next E15 run
 - => Full kinematics data / other final state (i.e. $\pi\Sigma N$)

S. Ajimura^a, G. Beer^b, H. Bhang^e, M. Bragadireanu^d, P. Buehler^e, L. Busso^{f,g},
M. Cargnelli^e, S. Choi^e, C. Curceanu^h, S. Enomotoⁱ, D. Faso^{f,g}, H. Fujioka^j, Y. Fujiwara^k,
T. Fukuda^l, C. Guaraldo^h, T. Hashimoto^m, R. S. Hayano^k, T. Hiraiwa^a, M. Iioⁿ, M. Iliescu^h,
K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimotoⁿ, T. Ishiwatari^e, K. Itahashi^m, M. Iwaiⁿ,
M. Iwasaki^{o,m*}, K. Kato^j, Y. Kato^m, S. Kawasakiⁱ, P. Kienle^p, T. Kim^o, H. Kou^o, Y. Ma^m,
J. Marton^e, Y. Matsuda^g, Y. Mizoi^l, O. Morra^f, T. Nagae^{j†}, H. Noumi^a, H. Ohnishi^m,
S. Okada^m, H. Outa^m, K. Piscicchia^h, M. Poli Lener^h, A. Romero Vidal^h, Y. Sada^j,
A. Sakaguchiⁱ, F. Sakuma^m, M. Sato^m, A. Scordo^h, M. Sekimotoⁿ, H. Shi^k, D. Sirghi^{h,d},
F. Sirghi^{h,d}, K. Suzuki^e, S. Suzukiⁿ, T. Suzuki^k, K. Tanida^e, H. Tatsuno^h, M. Tokuda^o,
D. Tomono^j, A. Toyodaⁿ, K. Tsukada^r, O. Vazquez Doce^{h,s}, E. Widmann^e,
B. K. Wuenschek^e, T. Yamagaⁱ, T. Yamazaki^{k,m}, H. Yim^t, Q. Zhang^m, and J. Zmeskal^e (J-PARC E15 Collaboration)

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea (d) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (e) Stefan-Meyer-Institut f
ür subatomare Physik, A-1090 Vienna, Austria (f) INFN Sezione di Torino, Torino, Italy (g) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy (h) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan ment of Physics, Kyoto University, Kyoto, 606-8502, Japan Communication University, Osaka, 572-8530, Japan (1) Laboratory мо. 153-8902, Japan (q) Graduate School of Arts and Sciences, The University of . (r) Department of Physics, Tohoku University, Sendai, 980-578, Japan (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea

List of expected spectra

Process ID	process	Ratio [%]
1600	Λ p ns	2.91E-09
1603	Λ p ns+ π	1.45E-07
1610	Σ p ns	1.22E-09
1613	Σ p ns + π	3.01896
2100	Λ pn	7.39825
2102	Λ pn+ π	21.1222
2103	Λ pn+2 π	3.24E-07
2104	Λ pn+3 π	0.000215
2110	Σpn	5.27836
2112	∑pn+p	20.2813
2113	Σ pn+2 π	39.4892
2114	Σ pn+3 π	4.92E-08

Contribution from twonucleon absorption processes, *i.e.* one nucleon is as spectator, are almost negligible in this reaction. (10⁻⁹ % level)

- Event tagged by ppπ-@CDS
- 2. Requested no forward charged particle
- . Defined Λ decay pair by using Likelihood method.
- Selected missing neutron

 To ensure Λpn final state, missing neutron (0.84-1.04GeV/c²) selected

Cylindrical Detector System

- To detect the decay particles from ³HeTarget
 - Momentum reconstruction
 - Particle identification

CDC (15 layers, 1816ch) + CDH (36 seg) + 0.7T solid angle: 60% of 4π Mass resolution (Kpp) ~10MeV/c²

Drift length~9

Layer 15 layers

Read out: 1816 ch

CDC

Peak structure and Momentum transfer of 3 He(K⁻, Λ p)n

- Peak structure seems enhanced in small momentum transfer region.
- Process which make peak structure is enhanced in small momentum transfer region?

Back up of Λp selection

Probability fuction

Cut -log(prob)<2.5
 missID <0.5% @3NA Λpn
 =>miss ID @2NA (Λpn_{sp}, Σ⁰pn_{sp}) & 3NA (Σ⁰pn) also less than 0.5%.
 Detail of fitting of DCAs and IM(Lp) is in Backup slide.

$\cos\theta_{\Lambda}$ in Λp stopped flame

- Data spectra is subtracted with Side band background.
- Red line is simulation of X state (S-wave)
- Data (cut in mean_{Xstate} $\pm 1\sigma$) is almost consist to sim.
- =>X state is S-wave state?

χ 2 mapping of X state (sim)

- 1. Generated X state in some B.E and width
- 2. Fitting 6th polynomial to x2 v.s width in certain B.E
- 3. Making continues plot of χ^2 map
- 4. Fitting map with 2^{nd} order XY function $(z=p_0+p_1x^2+p_2y^2+p_3xy+p_4x+p_5y)$

Generated X state in some B.E and width

Full Width [MeV]

Making continues plot of y2 map

h2p

Cos n plot of Sim

M. M. of K⁰s

(41)

Data and sim are consistent => missing mass resolution and center value is good

I add offsell correction (considering 3He binding energy) to sim And chage distribution of Fermi motion (almost no effect to MM of

³He(K⁻,Λp)n^{NC}

- Expected missing n in NC ~60events
- => 60 x 0.25(eff^{NC}) =15
- Detected event =10events
- In missing energy spec., ~4events from Σ⁰ (estimation of Σ⁰pn ~30%)
 Consistent!!!

Missing neutron

- Reduced $\chi^2 \sim 1$
- Fitting is not bad

nIM_MM_Lp_Lpn_wocut

Peak structure of X state is on missing n peak

• => almost X state events seem not to be come from Σ^0

Resolution of I.M (Lp)

- Estimated with sim of 3NA(Lpn)
- At Kpp th, resl is ~10MeV