The history and future of hadronicmolecule/cluster with strangeness

from **RIKEN Cluster of Pioneering Research** Nishina Center

ROCKSTAR ECT* Trento 12th 2023

Experimental point of view toward revolutionary Nuclear Study via revealing Internal Structure of hadronic-molecule

M. Iwasaki

contents:

KN interaction study via kaonic atom

Search for *K*NN nuclear bound state as a *natural extension of* $\Lambda(1405) \equiv KN$

Recent results on *k* **bound state**

Future direction for K (ϕ) bound state study

https://doi.org/10.1007/978-981-15-8818-1 37-1

Springer Reference Handbook of Nuclear Physics ② Springer

Kaonic Nuclei from the Experimental Viewpoint

Research on kaonic nuclear bound states is a completely new field. This nuclear system consists of

doi.org

Dalitz and Yazaki's naive question:

"Why you cannot resolve kaonic hydrogen puzzle?"

Small Signal Stark Low Hydrogen Density

Huge Background **Absorption Reaction** Decay in Flight

nuclear physics (pre-history)

How to approach kaonic hydrogen puzzle?

Gas Target Stark Free
 Si(Li) in Hydrogen Gas

How to approach kaonic hydrogen puzzle?

Background Free gaseous target / final state tagging / stop K selection / fiducial cut

Reaction	Produced	Branching	$\pi/\mu/e$ Multiplicity	γ Multiplicity		
	Particles	Ratio	(> 150 MeV/c)			
Free Decay of K ⁻						
$\mu^- \nu$	$\mu^- \nu$	63.5~%	1	0		
$\pi^{-}\pi^{0}$	$\pi^- 2\gamma$	21.2~%	1	2		
$\pi^-\pi^-\pi^+$	$\pi^-\pi^-\pi^+$	5.59~%	0	0		
$e^-\pi^{ m o} u$	$e^-2\gamma$	4.82~%	1	2		
$\mu^-\pi^{ m o} u$	$\mu^- 2\gamma$	3.18~%	1	2		
$\pi^{-}\pi^{0}\pi^{0}$	$\pi^-4\gamma$	1.73~%	0	4		
K ⁻ p Reaction						
$\Sigma^{+}\pi^{-}$	$\pi^- 2 \gamma \mathrm{p}$	10 %	1	2		
$\Sigma^+\pi^-$	$\pi^{-}\pi^{+}n$	$10 \ \%$	2	0		
$\Sigma^{-}\pi^{+}$	$\pi^+\pi^-n$	46 %	2	0		
$\Sigma^{\mathrm{o}}\pi^{\mathrm{o}}$	$\pi^- 3 \gamma { m p}$	18 %	0	3		
$\Sigma^{\mathrm{o}}\pi^{\mathrm{o}}$	$5\gamma \mathrm{n}$	10 %	0	5		
$\Lambda\pi^{ m o}$	$\pi^- 2 \gamma { m p}$	4 %	0	2		
$\Lambda\pi^{ m o}$	$4\gamma n$	2 %	0	4		

How to approach kaonic hydrogen puzzle?

nuclear physics (pre-history)

SIDDHARTA setup at DAΦNE

Residuals of K-p x-ray spectrum after subtraction of fitted background Kaonic hydrogen x10² higher [e] 20 [e] Ka Κβ Counts / 1.0 0.5 0 **EM** value K-p Ka 5 6 8 9 4

KAONIC HYDROGEN results

 $\epsilon_{1S} = -283 \pm 360$ $\Gamma_{1S} = 541 \pm 89(s)$

upward (repulsive) shift

- $\varepsilon_{1S} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$
- $\Gamma_{1S} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV}$

downward (attractive) shift

KAONIC HYDROGEN results

upward (repulsive) shift 1000 He & Landau 93 800

- $\varepsilon_{1S} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$
- $\Gamma_{1S} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV}$

downward (attractive) shift

R. Seki, Phys. Rev. C5 (1972) 1196

As a candidate of K^-p bound state, $\Lambda(1405)$ is the most natural - Is it quark excited state of Λ baryon (qqq)? $\Lambda(1405) = KN \dots$ a "molecule-like hadron composite"

- R.H. Dalitz and S.F. Tuan, Ann. Phys., 3, 307 (1960)
 - supported by kaonic hydrogen data Phys. Rev. Lett., 78, 3067 (1997) supported by Lattice QCD

J.M.M. Hall et al., Phys. Rev. Lett. 114(2015)132002.

why not KNN?

forming a nuclear bound state

From Λ(1405) to kaonic nuclei Is Λ(1115) an excited state of *uds*?

From $\Lambda(1405)$ to kaonic nuclei with $\overline{q}q$ (χ -condensate) in vacuum

From A(1405) to kaonic nuclei two color-singlet objects bound by meson exchange : $p = K^{-1}$

 $M(pK^{-}) = 1432 MeV/c^{2}$

 $\Lambda(1405)$ is the most natural candidate as for the K^-p bound state due to the strong interaction, which locates far below the Coulomb bound state (atomic states).

 $\Lambda(1405)$ can be molecule-like hadron cluster composed of "K⁻p" or in between the quark- and/or hadron-composite in lattice-QCD quark-composite: ~10% hadron-composite: ~90%

 $\Lambda(1405)$ can be molecule-like hadron cluster composed of "K⁻p" or in between the quark- and/or hadron-composite

Then you may put one more proton ...

 $\Lambda(1405)$ can be molecule-like hadron cluster composed of "K⁻p" or in between the quark- and/or hadron-composite quark-composite: ~10% hadron-composite: ~90%

Then you may put one more proton ... "K⁻pp" may exist

contents:

KN interaction study via kaonic atom

Search for *KNN* nuclear bound state as a *natural extension of* $\Lambda(1405) \equiv KN$

Recent results on *k* **bound state**

Future direction for K (ϕ) bound state study

https://doi.org/10.1007/978-981-15-8818-1 37-1

Springer Reference Handbook of Nuclear Physics ② Springer

Kaonic Nuclei from the Experimental Viewpoint

Research on kaonic nuclear bound states is a completely new field. This nuclear system consists of

doi.org

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:	
q = u or d	Fermion:	E	
	Pauli exclusion	particles can s	

Yukawa Theorem tells :

- in nuclei, mesons are virtual particles and form nuclear potential

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:	
q = u or d	Fermion:	E	
	Pauli exclusion	particles can	

Yukawa Theorem tells :

- in nuclei, mesons are virtual particles and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:	
q = u or d	Fermion:	E	
	Pauli exclusion	particles can	

Yukawa Theorem tells :

- in nuclei, mesons are virtual particles and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

... finally resolved as ... -

K (*qs*) forms a bound state with two nulceons

 \overline{K} meson (K⁻: \overline{u} s, \overline{K}^{0} : \overline{d} s)

- Nuclei consist of nucleons bound by nuclear force

nucleons (N):	qqq	meson:	
q = u or d	Fermion:	E	
	Pauli exclusion	particles can	

Yukawa Theorem tells :

- in nuclei, mesons are virtual particles and form nuclear potential - in vacuum, mesons are real particles having own intrinsic masses

Long standing question :

Can meson be a constituent particle forming nuclei?

— Can meson form a quantum state as a particle ? —

... finally resolved as ... -

K (qs) forms a bound state with two nulceons

 \overline{K} meson (K⁻: \overline{u} s, \overline{K}^{0} : \overline{d} s)

totally new probe (impurity) to study inside nuclei

$K^- + {}^{3}He (ppn)$

(K⁻+pp) + n substitute n in ³He by K⁻ @ 1 GeV/c

$K^- + {}^{3}He (ppn)$

(K⁻+pp) + n

substitute n in ³He by K⁻ @ 1 GeV/c

K⁻ + ³He (ppn)

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

(K⁻+pp) + n substitute n in ³He by K⁻ @ 1 GeV/c

$K^- + {}^{3}He (ppn)$

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

(K⁻+pp) + n

substitute n in ³He by K⁻ @ 1 GeV/c

strong KN attraction? "K⁻pp" bound state? / compact system?

$K^- + {}^{3}He (ppn)$

$K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation

(K⁻+pp) + n

substitute n in ³He by K⁻ @ 1 GeV/c

strong KN attraction? "K⁻pp" bound state? / compact system?

If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$

J-PARC E15: "K⁻pp" Exploration Research

$K^- + {}^{3}He (ppn)$

 $(K^{-} + pp) + n$

substitute n in ³He by K⁻ @ 1 GeV/c

strong KN attraction? "K⁻pp" bound state? / compact system?

- If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$
- $K^- + ^{3}He \rightarrow (K^- + pp) + n$: formation $(K^- + pp) \rightarrow \Lambda + p : decay(M, q)$
 - only when all the particles are in the strong interaction range

J-PARC E15: "K⁻pp" Exploration Research

$K^- + {}^{3}He (ppn)$

final state particles $K^- + {}^{3}He \rightarrow (K^- + pp) + n$: formation $(K^- + pp) \rightarrow (\Lambda + p) : decay (M, q)$ only when all the particles are in the strong interaction range select $K^- + {}^{3}He \rightarrow (\Lambda + p) + n$ events, analyze (*invariant mass M*) of (K⁻ + pp)-system and *momentum transfer* **q** to the system

substitute n in ³He by K⁻ @ 1 GeV/c

strong KN attraction? "K⁻pp" bound state? / compact system?

(K⁻+pp) + n

If "K⁻pp" exits, a peak will be formed in invariant mass spectrum below M(K⁻pp) $M(K^-pp) \equiv m_{K^-} + 2m_p$

Experimental Setup for E15

beam dump

liquid ³He-target system

beam line spectrometer

beam sweeping

magnet

neutron counter charge veto counter proton counter

K. Agari et. al., PTEP 2012, 02B011

³He(K⁻, n_{NC})X — semi-inclusive

³He(K⁻, n_{NC})X — semi-inclusive

A nucleon knockout reaction $K^-N \rightarrow Kn'$ is the dominant reaction process

³He(K⁻, n_{NC})X — semi-inclusive

A nucleon knockout reaction $K^-N \rightarrow \overline{K}n'$ is the dominant reaction process

z-axis is in [nb] per (20MeV/c x 20 MeV/c²)

z-axis is in [nb] per (20MeV/c x 20 MeV/c²)

Ap + nmis. VS. theory

Theory helps a lot to understand Ap invariant mass spectrum, but still not compatible in large-q distribution

Sekihara Oset Ramos

Prog. Theor. Exp. Phys. 2016, 123D03 (27 pages) DOI: 10.1093/ptep/ptw166

On the structure observed in the in-flight ³He(K^- , Λp)*n* reaction at J-PARC

Takayasu Sekihara^{1,*}, Eulogio Oset², and Angels Ramos³

¹Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195, Japan ²Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain ³Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain *E-mail: sekihara@post.j-parc.jp

Received July 11, 2016; Revised October 7, 2016; Accepted October 15, 2016; Published December 30, 2016

in (m, q)-plane

PWIA based interpretation

contents:

KN interaction study via kaonic atom

Search for *K*NN nuclear bound state as a *natural extension of* $\Lambda(1405) \equiv KN$

Recent results on *k* **bound state**

Future direction for K (ϕ) bound state study

https://doi.org/10.1007/978-981-15-8818-1 37-1

Springer Reference Handbook of Nuclear Physics ② Springer

Kaonic Nuclei from the Experimental Viewpoint

Research on kaonic nuclear bound states is a completely new field. This nuclear system consists of

doi.org

$K^- + {}^{3}He \rightarrow \pi^{-}App$ reaction

... T. Yamaga's talk

p_p, [MeV/c] in $K^- + {}^{3}\text{He CM}$

SO *u* + MeV 400 300

p_p, [MeV/*c*] in $K^- + {}^{3}\text{He CM}$

SO *u* + MeV

CKOUt

 p_{p} , [MeV/c] in $K^{-} + {}^{3}\text{He CM}$

+ n CM[MeV/c] 0

 $\bar{K}^0 nn$ signal-like event concentration below K-bound thereshold is observed again, although the statistics is not sufficient.

С	k	0	U	t
	• •			

p_{p} , [MeV/c] in $K^{-} + {}^{3}\text{He}$ CM

+ n CM[MeV/c] 400

 $\bar{K}^0 nn$ signal-like event concentration below K-bound thereshold is observed again, although the statistics is not sufficient.

200

100 0

 $\Sigma(1385)$ contribution is not negligible compared to $(\Lambda p) + n$ final state.

С	k	0	U	t
	• •			

 p_{p} , [MeV/c] in $K^{-} + {}^{3}\text{He CM}$

[MeV

Comments on m-App reaction

- Hint of $\bar{K}^0 nn$ (isospin partner of K^-pp) is given
 - statistically insufficient to conclude, though
- The 2NA (two-nucleon absorption) reaction induced by K mesons is of interest regarding short-range pn-pair correlation in nuclei.
 - strong $m_{\pi^-\Lambda p} \approx \sqrt{s_{K^-d}} \sim 2.83 \, {\rm GeV}$ is seen, but not in $m_{\pi^+\Lambda n} \approx \sqrt{s_{K^-pp}}$ nor in $m_{\pi^\pm \Sigma^\mp n}$, which may suggest much weaker short-range pp-pair correlation in ${}^{3}\text{He}$ nuclei

what we are working on ... II

Signal of KNNN

K⁻+³He → (K⁻+pp) + n (K⁻+pp) → Λ+p

K⁻ + ⁴He → (K⁻ + ppn) + n (K⁻ + ppn) → Λ+d

E15: Ap

- Two disributions are quite similar
- structure below the threshold, QF-K, and broad background

Preliminary Ad result

С

Summary of present status - $\bar{K}NN$, $I_3 = +\frac{1}{2}$ identified in $\bar{K}NN \rightarrow \Lambda p$ analysis Phys. Lett. B789, 620-625 (2019)

- $\bar{K}NN \rightarrow \pi Yp$ decay dominance $Br_{\pi Yp} > 10 \times Br_{\Lambda p}$ - $\bar{K}NN$, $I_3 = -\frac{1}{2}$ hint in $\bar{K}NN \rightarrow \pi^- \Lambda p$ spectrum

- K nuclear bound state becomes more solid

Phys. Rev. C102, 044002 (2020)

- $\bar{K}NNN$, I = 0 identified in $\bar{K}NNN \rightarrow \Lambda d$ analysis ... T. Hashimoto's talk

contents:

KN interaction study via kaonic atom

Search for *K*NN nuclear bound state as a *natural extension of* $\Lambda(1405) \equiv KN$

Recent results on *K* **bound state**

Future direction for $\bar{K}(\phi)$ bound state study

https://doi.org/10.1007/978-981-15-8818-1 37-1

Springer Reference Handbook of Nuclear Physics ② Springer

Kaonic Nuclei from the Experimental Viewpoint

Research on kaonic nuclear bound states is a completely new field. This nuclear system consists of

doi.org

Toward systematic study and J^P (spin-parity) study

the nature of

Toward systematic study and J^P (spin-parity) study

Possible $I(J^p)$? KNN : $J^{P} = 0^{-1}$, I = 1/2: $I_{NN} = 1$, $S_{NN} = 0$, $L_{\bar{K}} = 0$ KNN: $J^{P} = 1^{-1}$, I = 1/2: $I_{NN} = 0$, $S_{NN} = 1$, $L_{\overline{K}} = 0$ $I(\bar{K}NN)/J^P(\bar{K}NN)$ NN symmetry " K^-pp " $I_3(\bar{K}NN) = +\frac{1}{2}$ $K^-pp'' \rightarrow \Lambda p$ requires " $\bar{K}^0 nn$ " I = 1/2, presence of $I_3(\bar{K}NN) = -\frac{1}{2}$ kaon requires negative parity, and the Λp dacay must be in P-wave *KN* coupling due to the negative $\sigma_{\bar{K}^0nn}$ parity σ_{K^-pp}

nucleon isospin symmetric $(I_{NN} = 1)$ and spin anti-symmetric $(S_{NN} = 0)$

nucleon isospin anti-symmetric $(I_{NN} = 0)$ and spin symmetric $(S_{NN} = 1)$

 $0.13 \sim 0.15$

~ 0.75

Λp decay axis and spin axis of KNN J^p

spin axis distribution referring to the decay axis

$\overline{K}NN: J^{P} = 0^{-}, I = 1/2: I_{NN} = 1, S_{NN} = 0, L_{\overline{K}} = 0$

symmetric around Kpp decay axis

How to measure spin-spin correlation – spin asymmetry measurement using $\Lambda ightarrow p\pi^-$ & p-C(H) scattering– p-C(H) scattering sensitive only on ϕ asymmetry

Toward J^P (spin · parity) study of K-pp with ³He target

Another extension: ϕN bound state ?

arXiv:2212.12690

Evidence of a $p-\phi$ bound state

Emma Chizzali^{a,b,*}, Yuki Kamiya^{c,d,**}, Raffaele Del Grande^b, Takumi Doi^d, Laura Fabbietti^b, Tetsuo Hatsuda^d, and Yan Lyu^{d,e}

The possibility of the existence of a ϕN bound state (J = 1/2) as a novel molecular hadron cluster has been pointed out by T. Hatsuda et al. This is consistent with $\phi\phi$ dominance near the production threshold of the $\bar{p}p$ reaction channel.

 ϕN signal might be found in J/Ψ decay?

If exist, nuclear ϕ bound states search is of interest

... *H. Onishi* 44

Summary

At present, it is crucial to systematically investigate the properties of various molecule-like hadron clusters (such as quantum energy and spin-parity) to better understand the hadron cluster $-\bar{K}N$, $\bar{K}NN$, $\bar{K}NNN$, ... and possibly ϕ as well to understand the hadronization in detail. (cf. quark-hadron cross over)

Even if the ϕN bound state does not exist, strong attraction between ϕN suggests the possible existence of multi-nucleon bound states like ϕNN , ϕNNN , ...

Using a new spectrometer system, we aim to investigate the properties of these molecule-like hadronic clusters with multiple nucleons ($A \ge 2$) in the future.

Theoretical progress is another key to fully understand the molecule-like hadronic clusters