# Recent results and future prospects of the K<sup>bar</sup>NN search via the (K-,N) reaction at J-PARC

#### F. Sakuma, RIKEN

### for the J-PARC E15 collaboration

Results of the E15 1<sup>st</sup> physics run
Future prospects of E15
Summary

Achievements and Perspectives in Low-Energy QCD with Strangeness, ECT\*, 2014 10/27-31

### **Kaonic Nuclei**

#### Kaonic nucleus is a bound state of nucleus and anti-kaon (K<sup>bar</sup>NN, K<sup>bar</sup>NNN, K<sup>bar</sup>K<sup>bar</sup>NN, ...)



T.Yamazaki, A.Dote, Y.Akiaishi, PLB587, 167 (2004).

## K<sup>-</sup>pp Bound State

#### K<sup>-</sup>pp : the simplest K<sup>bar</sup>-nuclear state

| Calculated $K^- pp$ binding energies <i>B</i> and widths $\Gamma$ (in MeV).                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                    | A.Gal, NPA914(2013)270                                                                                                                                                                                           |                                |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|
|                                                                                                                                                            | Chiral, energy dependent                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                    | Non-chiral, static calculations                                    |                                                                                                                                                                                                                  |                                |                    |
|                                                                                                                                                            | var. [7]                                                                                                                                                                                                        | var. [8]                                                                                                                                                                                                          | Fad. [9]                                                                                                                                                                                                           | var. [10]                                                          | Fad [11]                                                                                                                                                                                                         | Fad [12]                       | var. [13]          |
| В                                                                                                                                                          | 16                                                                                                                                                                                                              | 17-23                                                                                                                                                                                                             | 9–16                                                                                                                                                                                                               | 48                                                                 | 50-70                                                                                                                                                                                                            | 60-95                          | 40-80              |
| Г                                                                                                                                                          | 41                                                                                                                                                                                                              | 40-70                                                                                                                                                                                                             | 34-46                                                                                                                                                                                                              | 61                                                                 | 90-110                                                                                                                                                                                                           | 45-80                          | 40-85              |
| <ul> <li>[7] N. E</li> <li>[8] A. I</li> <li>[9] Y. II</li> <li>[10] T. Y</li> <li>[11] N.V</li> <li>N.V</li> <li>[12] Y. II</li> <li>[13] S. W</li> </ul> | Barnea, A. Gal, E.<br>Doté, T. Hyodo, W<br>Doté, T. Hyodo, W<br>keda, H. Kamano,<br>Yamazaki, Y. Akai<br>Y. Shevchenko, A.<br>Y. Shevchenko, A.<br>Keda, T. Sato, Phy<br>keda, T. Sato, Phy<br>Vycech, A.M. Gre | Z. Liverts, Phys.<br>7. Weise, Nucl. Ph<br>7. Weise, Phys. Re<br>7. Sato, Prog. Th<br>shi, Phys. Lett. B<br>Gal, J. Mareš, Ph<br>Gal, J. Mareš, J.<br>7. Rev. C 76 (200<br>es. Rev. C 79 (200<br>en, Phys. Rev. C | Lett. B 712 (2012) 1<br>hys. A 804 (2008) 19<br>ev. C 79 (2009) 0140<br>heor. Phys. 124 (2016<br>535 (2002) 70.<br>ys. Rev. Lett. 98 (20<br>Revai, Phys. Rev. C<br>07) 035203;<br>99) 035201.<br>79 (2009) 014001. | 32.<br>97;<br>003.<br>0) 533.<br>007) 082301;<br>76 (2007) 044004. | 120<br>100<br>80<br>A. Dote, T.Hyodo, W.We<br>60<br>N.Barnea, A.Gal, E.Z.Liverts<br>40<br>YIkeda, H.Kamano, T.Sato<br>20<br>0<br>20<br>40<br>40<br>20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 | N.V.Shevchenko, A.Gal, J.Mares | EXA2014<br>100 120 |

#### All theoretical studies predict existence of the K<sup>-</sup>pp $\rightarrow$ However, B.E. and $\Gamma$ are controversial

# **Experimental Principle of E15**

#### A search for the simplest kaonic nucleus, K<sup>-</sup>pp, using <sup>3</sup>He(*in-flight* K<sup>-</sup>,n) reaction



- two-nucleon absorption]
- hyperon decays

CAN be discriminated kinematically

### **Experimental Setup**



# E15 1<sup>st</sup> Stage Physics-Run

- Production run of ~1% of the approved proposal was successfully performed in 2013.
- All detector systems worked well as designed.

|                         | Primary-beam<br>intensity | Secondary-kaon<br>intensity | Duration | Kaons on target<br>(w/ tgt selection) |
|-------------------------|---------------------------|-----------------------------|----------|---------------------------------------|
| March, 2013<br>(Run#47) | 14.5 kW<br>(18 Tppp, 6s)  | 80 k/spill                  | 30 h     | 1.1 x 10 <sup>9</sup>                 |
| May, 2013<br>(Run#49c)  | 24 kW<br>(30 Tppp, 6s)    | 140 k/spill                 | 88 h     | 5.3 x 10 <sup>9</sup>                 |

\* production target: Au 50% loss, spill length: 2s, spill duty factor: ~45%, K/pi ratio: ~1/2
 \* ~70% of beam kaons hit the fiducial volume of <sup>3</sup>He target

# Summary of E15 1<sup>st</sup>

### **Formation Channel**

Semi-Inclusive <sup>3</sup>He(K<sup>-</sup>,n)X

- No significant bump structure  $\int_{4}^{5} 80$ in the deeply bound region
- Excess below the threshold attributed to 2NA of  $\Lambda^*$ n?

# **Decay Channel**

Exclusive  ${}^{3}He(K^{-},\Lambda p)n$ 

- Hint of the excess around the threshold
- Count per 0.04GeV/c<sup>2</sup> ✓ Cannot be from 2NA of  $\Lambda^*$ n (final state =  $\Lambda pn$ )



# Formation Channel, Semi-Inclusive <sup>3</sup>He(K<sup>-</sup>,n)X

T.Hashimoto et al., arXiv:1408.5637, submitted to PLB



The tail structure is not due to "the detector resolution"



## **Spectrum below the Threshold**



No significant bump-structure in the deep-binding region
 Statistically significant excess just below the threshold



#### FINUDA@DAΦNE

PRL94(2005)212303

A(stopped K<sup>-</sup>,  $\Lambda$ p)



2.2

M(pA)

2.3

[GeV/c<sup>2</sup>]

2.5

2.1

2.0



• Excess near the threshold can be seen only in E15

13



#### U.L. depends on the decay mode



## **Spectrum below the Threshold**



No significant bump-structure in the deep-binding region
 Statistically significant excess just below the threshold

### **Excess = Elementary Processes?**



#### The tail structure is NOT reproduced by well known processes

would be attributed to the imaginary
part of the attractive K<sup>bar</sup>N
→ Multi-NA? K<sup>-</sup>pp?

- Detector acceptance and all known K<sup>-</sup>N interactions are taken in to account:
  - Cross-section [CERN-HERA-83-02]
  - Fermi-motion
  - Angular distribution
- Simple assumptions:

$$- \sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n} (\sim 150 \text{ mb})^{7}$$

## Excess = $\pi\Sigma N$ , $\pi\Sigma NN$ , etc?



Each process is simulated with unreasonably large CS of 100mb

→ contributions in the binding region are negligible



- $\Lambda N / \Sigma N$  branches are negligibly small (consistent with KEK-PS E548)
- $\Lambda(1405)$ n branch seems to reproduce the excess
  - need rather large CS of ~5mb/sr
  - $\Lambda(1405)$  shape is controversial spectrum" by Magas et al., PRC81(2010)024609.

"semi-inclusive measurement would distort the

- ightarrow careful quantitative analysis is required
- For further study, exclusive measurement of  $\pi\Sigma N$  is important. <sup>19</sup>

## Excess = Loosely-Bound K<sup>-</sup>pp?



- The excess is assumed to be fully attributed to the bound K<sup>-</sup>pp state
- dσ/dΩ(θ<sub>lab</sub>=0°) of the excess is ~ mb/sr (Excess/QF < ~10%)</li>

## **Comparison between E15 and Calc.**



# Decay Channel, Exclusive <sup>3</sup>He(K<sup>-</sup>,Λp)n

# Exclusive <sup>3</sup>He(K<sup>-</sup>,∧p)n events



# Dalitz plot



# Dalitz plot



# K-induced vs $\pi$ -induced

[1] D. Gotta, et al., PRC51. 496 (1995)
[2] P. Weber et al., NPA501 765 (1989)
[3] G. Backenstoss et al., PRL55. 2782 (1985)

- $\pi^-$  stopped [1]
  - 2nucleon absorption &FSI (50%/ $\pi$  <sub>stopped</sub>) are clearly seen
  - 3nucleon absorption <3% / $\pi$  stopped
- π<sup>-</sup> in-flight [2],[3]
  - 2nucleon absorption 0.85  $\pm$  0.17mb (266 MeV/c)
  - 3nucleon absorption 3.7  $\pm$  0.6 mb(220 MeV/c)
  - 3NA/2NA~4



# $\Lambda p$ Invariant Mass



 $FS = \Lambda (\Sigma^0) pn$  $\rightarrow$  cannot be from **2NA of**  $\Lambda^*n$ 

#### **Excess around the** threshold?

Further study is ongoing, such as contribution from 2NA+2step.

## **Comparison with Phase-Space**



- total CS : ~200 μb (~ 0.1% of total cross section of K<sup>-3</sup>He)
   when phase-space distributions are assumed
- Excess around the threshold?

## **Comparison with Phase-Space**



data cannot be reproduced by the phase-space?

# Formation + Decay Channel, Kinematically Complete <sup>3</sup>He(K<sup>-</sup>, Λpn)

# Kinematically-complete measurement of <sup>3</sup>He(K<sup>-</sup>, Λpn)



- Minimum momentum transfer of the <sup>3</sup>He(K<sup>-</sup>,n) reaction
   → would enhance the S=-1 di-baryon production
- More beam time is required

# **Future Prospects of E15**



#### The goal of the E15<sup>2nd</sup>

- **1.** derive  $\pi\Sigma N$  decay information in <sup>3</sup>He(K<sup>-</sup>,n)X reaction
- 2. confirm the spectral shape of the  $\Lambda p$  invariant-mass by the exclusive measurement of <sup>3</sup>He(K<sup>-</sup>,  $\Lambda p$ )n
- 3. explore the neutron spectrum at  $\theta_{lab}=0^{\circ}$  with the kinematically complete measurement of <sup>3</sup>He(K<sup>-</sup>,  $\Lambda$ pn)



# **The J-PARC E15 Collaboration**

S. Ajimura<sup>a</sup>, G. Beer<sup>b</sup>, H. Bhang<sup>c</sup>, M. Bragadireanu<sup>e</sup>, P. Buehler<sup>f</sup>, L. Busso<sup>g,h</sup>, M. Cargnelli<sup>f</sup>, S. Choi<sup>c</sup>, C. Curceanu<sup>d</sup>, S. Enomoto<sup>i</sup>, D. Faso<sup>g,h</sup>, H. Fujioka<sup>j</sup>, Y. Fujiwara<sup>k</sup>, T. Fukuda<sup>l</sup>, C. Guaraldo<sup>d</sup>, T. Hashimoto<sup>k</sup>, R. S. Hayano<sup>k</sup>, T. Hiraiwa<sup>a</sup>, M. Iio<sup>o</sup>, M. Iliescu<sup>d</sup>, K. Inoue<sup>i</sup>, Y. Ishiguro<sup>j</sup>, T. Ishikawa<sup>k</sup>, S. Ishimoto<sup>o</sup>, T. Ishiwatari<sup>f</sup>, K. Itahashi<sup>n</sup>, M. Iwai<sup>o</sup>, M. Iwasaki<sup>m,n\*</sup>, Y. Kato<sup>n</sup>, S. Kawasaki<sup>i</sup>, P. Kienle<sup>p</sup>, H. Kou<sup>m</sup>, Y. Ma<sup>n</sup>, J. Marton<sup>f</sup>, Y. Matsuda<sup>q</sup>, Y. Mizoi<sup>l</sup>, O. Morra<sup>g</sup>, T. Nagae<sup>j\$</sup>, H. Noumi<sup>a</sup>, H. Ohnishi<sup>n</sup>, S. Okada<sup>n</sup>, H. Outa<sup>n</sup>, K. Piscicchia<sup>d</sup>, M. Poli Lener<sup>d</sup>, A. Romero Vidal<sup>d</sup>, Y. Sada<sup>j</sup>, A. Sakaguchi<sup>i</sup>, F. Sakuma<sup>n</sup>, M. Sato<sup>n</sup>, A. Scordo<sup>d</sup>, M. Sekimoto<sup>o</sup>, H. Shi<sup>k</sup>, D. Sirghi<sup>d,e</sup>, F. Sirghi<sup>d,e</sup>, K. Suzuki<sup>f</sup>, S. Suzuki<sup>o</sup>, T. Suzuki<sup>k</sup>, K. Tanida<sup>c</sup>, H. Tatsuno<sup>d</sup>, M. Tokuda<sup>m</sup>, D. Tomono<sup>n</sup>, A. Toyoda<sup>o</sup>, K. Tsukada<sup>r</sup>, O. Vazquez Doce<sup>d,s</sup>, E. Widmann<sup>f</sup>, B. K. Weunschek<sup>f</sup>, T. Yamaga<sup>i</sup>, T. Yamazaki<sup>k,n</sup>, H. Yim<sup>t</sup>, Q. Zhang<sup>n</sup>, and J. Zmeskal<sup>f</sup>

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ

(c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea ቚ

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 📕

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 🔹

(j) Department of Physics, Kyoto University, Kyoto, 606–8502, Japan 🔸

(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ●

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan 鱼

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan 🔸

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ●

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(\*) Spokesperson

(\$) Co-Spokesperson