

K-3He K-4He

Tadashi Hashimoto (JAEA ASRC) for the J-PARC E15/E31/E57/E62/E73/T77/E80/P89 collaborations

12-15 September 2023 @ J-PARC

KbarN interaction

 $\Lambda(1405)$ in chiral unitary model 2

π

T. Hyodo

 $\Lambda(1405)$

- Strong attraction in I=0 from scattering and X-ray experiements.
- $\Lambda(1405) = \overline{K}N$ molucle picture is now widely accepted Why not kaonic nucleus with additional nucleons?

- Theoretical calculations agree on the existence of $\overline{K}NN$, although B.E. and Γ depend on the $\overline{K}N$ interaction models.
- No conclusive experimental evidence before us.

Mass number dependence

$$\bar{K}NNN \quad I(J^p) = 0(1/2^{-})$$

Not a complete list. sorry…

AY: PRC65(2002)044005, PLB535(2002)70. WG: PRC79(2009)014001. BGL: PLB712(2012)132. OHHMH: PRC95(2017)065202.

Larger binding than $\bar{K}NN$ and similar width are predicted.

KNNN: Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Experiments at J-PARC

A series of experiments at J-PARC K1.8BR Probe different energy, density, and isospin

Our approach: in-flight (K-, n)

- K⁻ beam at 1 GeV/c to maximize elementary (K⁻, N) cross sections
- Most of background processes can be kinematically separated.
 - Hyperon decays and multi-nucleon absorption reactions
- Simplest target allow exclusive analysis.

J-PARC K1.8BR

Relatively short beamline suitable for low-momentum K⁻ beam

E15/E31@K1.8BR

beam dump

beam sweeping magnet

liquid ³He target system

CDS

neutron counter charge veto counter proton counter

beam line spectrometer

$\bar{K}NN \ln {^{3}He(K^{-}, \Lambda p)n}$

PHYSICAL REVIEW C 102, 044002 (2020)

Observation of a $\overline{K}NN$ bound state in the ³He(K^- , Λp)n reaction

T. Yamaga,^{1,*} S. Ajimura,² H. Asano,¹ G. Beer,³ H. Bhang,⁴ M. Bragadireanu,⁵ P. Buehler,⁶ L. Busso,^{7,8} M. Cargnelli,⁶ S. Choi,⁴ C. Curceanu,⁹ S. Enomoto,¹⁴ H. Fujioka,¹⁵ Y. Fujiwara,¹² T. Fukuda,¹³ C. Guaraldo,⁹ T. Hashimoto,²⁰ R. S. Hayano,¹² T. Hiraiwa,² M. Iio,¹⁴ M. Iliescu,⁹ K. Inoue,² Y. Ishiguro,¹¹ T. Ishikawa,¹² S. Ishimoto,¹⁴ K. Itahashi,¹ M. Iwai,¹⁴ M. Iwasaki,^{1,†} K. Kanno,¹² K. Kato,¹¹ Y. Kato,¹ S. Kawasaki,¹⁰ P. Kienle,^{16,‡} H. Kou,¹⁵ Y. Ma,¹ J. Marton,⁶ Y. Matsuda,¹⁷ Y. Mizoi,¹³ O. Morra,⁷ T. Nagae,¹¹ H. Noumi,^{2,14} H. Ohnishi,²² S. Okada,²³ H. Outa,¹ K. Piscicchia,^{24,9}
Y. Sada,²² A. Sakaguchi,¹⁰ F. Sakuma,¹ M. Sato,¹⁴ A. Scordo,⁹ M. Sekimoto,¹⁴ H. Shi,⁶ K. Shirotori,² D. Sirghi,^{9,5} F. Sirghi,^{9,5} S. Suzuki,¹⁴ T. Suzuki,¹² K. Tanida,²⁰ H. Tatsuno,²¹ M. Tokuda,¹⁵ D. Tomono,² A. Toyoda,¹⁴ K. Tsukada,¹⁸ O. Vazquez Doce,^{9,16} E. Widmann,⁶ T. Yamazaki,^{12,1} H. Yim,¹⁹ Q. Zhang,¹ and J. Zmeskal⁶ (J-PARC E15 Collaboration)

 Λpn event selection

15-layer CDC and TOF hodoscopes

missing neutron selection Mesonic final states; 1000 $\Lambda p + \pi N, \Sigma^0 p + \pi N$ Signal; $\Lambda pn \rightarrow pp\pi^- + n$ Counts **BG**; $\Sigma^- pp \rightarrow pp\pi^- + n$ **BG**; $\Sigma^0 pn \rightarrow pp\pi^- + n\gamma$ 0.6 0.8 1.2 1.4 Missing mass of ${}^{3}\text{He}(K^{-}, \Lambda p)X$

- *Λpn* events are selected with ~80% purity.
- . ~20% $\Sigma^0 pn/\Sigma^- pp$ contamination

Obtained spectrum in J-PARC E15

 q_r : momentum transfer to Λp system

Model functions

+ Broad component

2D Fit for the " $\bar{K}NN$ " state

 $0.3 < q_x < 0.6$ GeV/c: Signals are well separated from other process

$\overline{KNNN} \text{ in } {}^{4}\text{He}(K^-, \Lambda d)n$

Helium-4 data with the E15 setup as a test experiment in 2020

KNNN: Preliminary result

- Two disributions are quite similar
- structure below the threshold, QF-K⁻, and broad background

16

р

KNNN: Preliminary result

Comparison with theoretical calc.

- The binding energy is compatible with theoretical predictions
- " $\bar{K}NNN$ " system might have larger binding than " $\bar{K}NN$ "
- Experimental width is larger than theoretical predictions.

Comparison with Sekihara calc.

- Good agreement in the mass spectrum.
 (although it failed to explain experimental q spectrum)
- Detailed comparison with theoretical spectrum is important

Future programs for \bar{K} nuclei

- . $\bar{K}N(\Lambda(1405))$
 - $d(K^-, n)$ reaction with a wide q-region
 - neutron detection is required to reconstruct $\pi^{\pm}\Sigma^{\mp}$ decay
- $\overline{K}NN$ J-PARC P89
 - . spin-parity determination by spin-spin correlation of Λp
 - . Search for isospin partner: $(\bar{K}NN)^{I_z=-1/2} \rightarrow \Lambda n$
 - . Decay branch: Non-mesonic $(\Lambda p, \Sigma^0 p, \Sigma^+ n)$, Mesonic $(\pi \Lambda N, \pi \Sigma N)$
- *KNNN* J-PARC E80
 - . Appn decay mode in addition to Λd
- Heaviear systems
 - $K^-\alpha$ via ${}^6Li(K^-, d)$, …

neutron detection polarimeter

J-PARC E80 with a new spectrometer

E15 CDS

- About 10 times volume
- •We got a large budget, 特別推進 (P.I.: M. Iwasaki, JFY2022—JFY2026)

New spectrometer

- x3 longer CDC: solid angle 59%→93%
- 3-layer barrel NC (CNC): neutron efficiency 3%→15%
 - **polalimeter** trackers between CNCs in future
- VFT to improve z-vertex & momentum resolution

Expected spectra @3 weeks, 90kw

x20 K- on target, x2 acceptance, x5 neutron efficiency

V Clear peak would be observed for both modes

Construction status

Return yoke for the solenoid

Cylindrical drift chamber

- JFY2024: Solenoid magnet will be completed
- JFY2025: Installation &commissioning
- JFY2026: Physics data taking

Study of K^{bar}-nucl. interaction

A series of experiments at J-PARC K1.8BR Probe different energy, density, and isospin

Kaonic deuterium

A. Cieplý et al. NPA 954 (2016) 17–40

Need K⁻d data to constrain isospin 1 component
→ SIDDHARTA2 (runnning) / J-PARC E57 (future)

K^{-3/4}He atom X-rays with a cryogenic detector

PHYSICAL REVIEW LETTERS 128, 112503 (2022)

Measurements of Strong-Interaction Effects in Kaonic-Helium Isotopes at Sub-eV Precision with X-Ray Microcalorimeters

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ R. Nagatomi,⁴ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 Collaboration)

Kaonic atom X-rays

Unique probe of the K^{bar}-nucleus strong interaction at the threshold energy

Observables: Shift, Width, and Yield

"Kaonic helium puzzle"

S. Hirenzaki et al., PRC 61, 055205 (2000)

Y. Akaishi, EXA2005 proceedings

anomalous shift

Large shift and width imply the generation of a nuclear state

Transition-Edge-Sensor microcalorimeters

Ф ~1 ст

✓ <u>240 pixels</u> ✓ 23 mm² eff. area

✓ 1 pixel : <u>300 x 320 um² (~ 0.1 mm²)</u>
 ✓ Mo-Cu bilayer TES. Tc ~ 107 mK.
 ✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

E62 setup @J-PARC K1.8BR

32

TES in-beam performance

After all the analysis optimization (mainly reduction of charge-particle effects)

Detector response is well described by a gaussian and a low-energy exponential tail

Resolution geometrical map

no box : doesn't work at all (12 pixel)

Kaonic X-ray spectra

Main source of the systematic error is the uncertainty in absolute energy scale.

Comparison with past experiments

Error bar: quadratic sum of stat. & sys.

10

Summary

- Anti-kaon could be a unique probe for hadron physics.
 We are performing systematic experiments at J-PARC K1.8BR.
- $\Lambda(1405)$ are investigated via $d(K^-,n)\pi\Sigma$ reaction in J-PARC E31. Physics Letters B 837 (2023) 137637
- $\overline{K}NN$ signals were observed in ³He(K⁻, Λ p)n channel in J-PARC E15.
- $\overline{K}NNN$ hint in $^{4}He(K^{-},\Lambda d)n$ events as a by-product of J-PARC T77.
- Kaonic atom X-rays: K-He isotopes with unprecedented precisions.
- More systematic study from JFY2026 with a new spectrometer
 - $\overline{K}NNN$ detailed study (J-PARC E80)
 - $\bar{K}NN$ spin-parity (J-PARC P89)

Kaonic nuclear state is getting more solid