

Exploring a new form of matter containing an anti-kaon

Tadashi Hashimoto (RIKEN) for J-PARC E15/E31/E57/E62/E73/T77/E80/P89 collaboration

Meson in nuclei

meson: quark-antiquark ($\bar{q}q$) pair

- In nuclei, mesons are viatual particles and form nuclear potential (Yukawa theorem)
- In vacuum, mesons are real particles having own intrinsic masses (cf. meson beam)

If yes, how do meson and core nucleus change?

Can meson be a constituent particle forming nuclei?

- $\Lambda(1405) = \overline{K}N$ molucle picture is now widely accepted

Why not kaonic nucleus with additional nucleons?

Strong attraction in I=0 from scattering and X-ray experiements.

Kaon in nuclei

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Basis of the \overline{KN} interaction • Experimentally solid × Sensitive only to the nuclear surface

Direct information in nuclei × No conclusive observation × Large widths are expected

A series of experiments probing different energy, density, and isospin

K1.8BR in HEF 56^m

T1 target

K1.8BR

K1.8BR suitable for low-energy K- beam below 1 GeV/c

Experiments at K1.8BR

- 2013: E15 1st, "K-pp" search [PTEP 061D01 (2015), PTEP, 051D01 (2016)]
- 2015: E15 2nd, "K-pp" search [PLB789, 620 (2019), PRC102, 044002 (2020), PRC10, 014002 (2024)]
- 2018: E31, Lambda(1405) [PLB837,137637(2023)]
- 2018: E62, Kaonic helium-3/4 with TES [PRL128, 112503 (2022)]
- 2019: E57 pilot run, Kaonic hydrogen with SDD
- . 2020: T77, ⁴_AH lifetime, "K-ppn" search [PLB485, 138128 (2023)]
- . 2022/2024: E73, $^{3}_{\Lambda}$ H production cross-section
- 2025?: E72, Λ(1670)
- 2026~?: E80, P89, Kaonic nuclei with a new solenoid spectrometer

Experiments at K1.8BR

- 2013: E15 1st, "K-pp" search [PTEP 061D01 (2015), PTEP, 051D01 (2016)]
- 2018: E31, Lambda(1405) [PLB837,137637(2023)]
- 2018: E62, Kaonic helium-3/4 with TES [PRL128, 112503 (2022)]
- 2019: E57 pilot run, Kaonic hydrogen with SDD
- . 2020: T77, ⁴_AH lifetime, "K-ppn" search [PLB485, 138128 (2023)]
- . 2022/2024: E73, $^{3}_{\Lambda}$ H production cross-section
- 2025?: E72, Λ(1670)
- 2026~?: E80, P89, Kaonic nuclei with a new solenoid spectrometer

Kaonic nuclei Kaonic atom

2015: E15 2nd, "K-pp" search [PLB789, 620 (2019), PRC102, 044002 (2020), PRC10, 014002 (2024)]

X-ray spectroscopy of kaonic atoms

Kaonic atom X-rays

Alternative to a low-E scattering experiment

TES (Transition Edge Sensor) microcalorimeters

TES (E62) ~6 eV (FWHM) PRL128, 112503 (2022)

SDD (SIDDHARTA) ~150 eV (FWHM) 응 PLB714(2012)40 읠 O

Comparison with past experiments Error bar: quadratic sum of stat. & sys. Yamagata-Sekihara et. al., [arXiv: 2407.20012] $U(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$ K⁻⁴He (KEK E570) K⁻³He (SIDDHARTA) 20 $(V_0, W_0) = (-90, -120)$ (-280, -70)K⁻⁴He (SIDDHARTA) ■ K⁻³He (J-PARC E62) K⁻⁴He (J-PARC E62) 15 -100 W₀ [MeV] PRL128, 112503 (2022) 10 -200 5 -300 -300 -200 -400 -100 V_0 [MeV] ⁴He \bullet ³He 0 x10 precision for shift&width -55 -1010 0 Exclude large shifts&widths 2p shift (eV) repulsive attractive Strong constraint on the potential

K⁻p K⁻pp K⁻ppn Direct search for kaonic nuclear bound state

Our approach: in-flight (K-, n) T. Kishimoto Momentum transfer

 \checkmark Effectively produce sub-threshold virtual \bar{K} ✓ Simplest target allows an exclusive analysis

- \checkmark Most of the background processes can be kinematically separated.
- ✓ Large-acceptance detector to cover a wide range of kinematical region

J-PARC K1.8BR

beam sweeping magnet

Liq. H₂/D₂/^{3/4}He target system

K-beam

beam line spectrometer

beam dump

neutron counter charge veto counter proton counter

 $|m_x: \Lambda p$ invariant mass q_x : momentum transfer to Λp system

K⁻pp

qx-indep. component below the threshold relatively deep, wide,

extend to high-q region

 \rightarrow large binding energy

-> wide momentum transfer

(K-, n) reaction on other targets J-PARC E15 $\stackrel{\text{K-}}{\longrightarrow}$ + $\stackrel{^{3\text{He}}}{\longrightarrow}$ $\stackrel{^{\text{reaction}}}{\longrightarrow}$ $\stackrel{\text{(K-pp)}}{\longrightarrow}$ + $\stackrel{(n)}{\longleftarrow}$

1 GeV/c

Short summary: Achievement so far

TES microcalorimeter has been successfully applied to kaonic-atom X rays

- Constraint on the *K*-nucleus potential parameters
- \rightarrow Extended application to muonic atoms Plenary talk on 17 (Thu) by T. Azuma

We have established the production method of kaonic nuclei

- kaonic nuclei seem to exist more or less universally "K-pp", "K-ppn", …
- (K-, n) reaction is effective in exciting sub-threshold \bar{K} amplitude
- Exclusive analysis is necessary to identify the broad structure.

• Highly sensitive detectors can be operated in a charged-particle-rich environment

What is next?

- Confirmation of " K^-ppn " $\rightarrow \Lambda + d, \Lambda + p + n$
- Further investigation of the *k̄*NN system
 - Search for the isospin partner " $\overline{K}^0 nn$ " via $\overline{K}^0 nn \to \Lambda + n$ decay
 - Determine the spin-parity of " K^-pp " \rightarrow spin-spin correlation measurement of Λ & p with **polarimeters**
- The spatial size of kaonic nuclei is of great interest
 - Decay branches to 1NKA, 2NKA, 3NKA … neutron counter forward TOF Fermi momentum of the spectator nucleon in the decay
- Heavier systems, $\overline{K}\overline{K}$ nuclei, …

Large-acceptance neutron counter

Three nucleon (K-ppn) $\rightarrow \Lambda + d$ \bar{K} absorption (3 $N_{\bar{K}A}$)

The ratio should be sensitive to the core size

$$1N_{\bar{K}A}: 2N_{\bar{K}A}: 3N_{\bar{K}A} \sim \rho_N: \rho_N^2: \rho_N^3?$$

Fermi motion of the spectator nucleon

New CDS

✓ Solid angle: x1.6 (59%→93%)
✓ Neutron eff. x4 (3%→12%)
✓ forward TOF counters
✓ (proton polarimeter in future)

E80-CDS

Construction status

We would like to start data-taking by the end of JFY2026

Details in P-273 by Y. Kimura **CDC:** Commissioning started

Summary

- Kaonic nuclei would open a new field of nuclear physics with anti-kaon as a new probe.
- Fruitful results in these 10 years. Observation of "K-pp" and "K-ppn", TES application to kaonic atoms
- With a new solenoid spectrometer, we would like to further extend the systematic study of kaonic nuclear systems.

Collaborations

T. Yamaga,^{1,*} S. Ajimura,² H. Asano,¹ G. Beer,³ H. Bhang,⁴ M. Bragadireanu,⁵ P. Buehler,⁶ L. Busso,^{7,8} M. Cargnelli,⁶ S. Choi,⁴ C. Curceanu,⁹ S. Enomoto,¹⁴ H. Fujioka,¹⁵ Y. Fujiwara,¹² T. Fukuda,¹³ C. Guaraldo,⁹ T. Hashimoto,²⁰ R. S. Hayano,¹² T. Hiraiwa,² M. Iio,¹⁴ M. Iliescu,⁹ K. Inoue,² Y. Ishiguro,¹¹ T. Ishikawa,¹² S. Ishimoto,¹⁴ K. Itahashi,¹ M. Iwai,¹⁴ M. Iwasaki,^{1,†} K. Kanno,¹² K. Kato,¹¹ Y. Kato,¹ S. Kawasaki,¹⁰ P. Kienle,^{16,‡} H. Kou,¹⁵ Y. Ma,¹ J. Marton,⁶ Y. Matsuda,¹⁷ Y. Mizoi,¹³ O. Morra,⁷ T. Nagae,¹¹ H. Noumi,^{2,14} H. Ohnishi,²² S. Okada,²³ H. Outa,¹ K. Piscicchia,^{24,9} Y. Sada,²² A. Sakaguchi,¹⁰ F. Sakuma,¹ M. Sato,¹⁴ A. Scordo,⁹ M. Sekimoto,¹⁴ H. Shi,⁶ K. Shirotori,² D. Sirghi,^{9,5} F. Sirghi,^{9,5} S. Suzuki,¹⁴ T. Suzuki,¹² K. Tanida,²⁰ H. Tatsuno,²¹ M. Tokuda,¹⁵ D. Tomono,² A. Toyoda,¹⁴ K. Tsukada,¹⁸ O. Vazquez Doce,^{9,16} E. Widmann,⁶ T. Yamazaki,^{12,1} H. Yim,¹⁹ Q. Zhang,¹ and J. Zmeskal⁶ (J-PARC E15 Collaboration)

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ R. Nagatomi,⁴ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 Collaboration)

New collaborators are welcome! Post-doc position is now open at RIKEN

Thank you for your attention !

